Skip to main content

Advertisement

Log in

Malignant Pleural Effusion from Lung Cancers with Driver Mutations

  • Pleural Diseases and Mesothelioma (G Lee, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The presence of driver mutations in lung cancer determines the natural course, options of specific targeted therapies and therefore prognosis and survival. The current review summarizes the knowledge about malignant pleural effusion (MPE) in lung cancer with driver mutations and the limited literature on this topic.

Recent Findings

The availability of targeted therapy highly effective in tumor control and reducing pleural effusion implies that a definitive pleural fluid control measure may not be beneficial at the early stage of the treatment. However, resistance to targeted therapies invariably develops, and given the longer survival of this subset of patients, they are subject to a high likelihood of requiring a repeated pleural drainage sometimes along the course of the disease.

Summary

Intense research effort is needed to inform the optimal approach to malignant pleural effusion in this specific subgroup of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2014;9(2):154–162. A large-scale epidemiological study involving multiple Asian populations revealing the occurrence of various EGFR mutations in adenocarcinoma of the lung. https://doi.org/10.1097/JTO.0000000000000033.

    Article  CAS  Google Scholar 

  2. Penz E, Watt KN, Hergott CA, Rahman NM, Psallidas I. Management of malignant pleural effusion: challenges and solutions. Cancer Manag Res. 2017;9:229–41. https://doi.org/10.2147/CMAR.S95663.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Putnam JB Jr. Malignant pleural effusions. Surg Clin North Am. 2002;82(4):867–83. https://doi.org/10.1016/S0039-6109(02)00036-1.

    Article  PubMed  Google Scholar 

  4. Rodriguez PF. Lung cancer and ipsilateral pleural effusion. Annals of oncology : official journal of the European Society for Medical Oncology. 1995;6(Suppl 3):S25–7.

    Article  Google Scholar 

  5. Egan AM, McPhillips D, Sarkar S, Breen DP. Malignant pleural effusion. QJM : monthly journal of the Association of Physicians. 2014;107(3):179–84. https://doi.org/10.1093/qjmed/hct245.

    Article  CAS  PubMed  Google Scholar 

  6. Stathopoulos GT, Sherrill TP, Karabela SP, Goleniewska K, Kalomenidis I, Roussos C, et al. Host-derived interleukin-5 promotes adenocarcinoma-induced malignant pleural effusion. Am J Respir Crit Care Med. 2010;182(10):1273–81. https://doi.org/10.1164/rccm.201001-0001OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stathopoulos GT, Zhu Z, Everhart MB, Kalomenidis I, Lawson WE, Bilaceroglu S, et al. Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol. 2006;34(2):142–50. https://doi.org/10.1165/rcmb.2005-0130OC.

    Article  CAS  PubMed  Google Scholar 

  8. Stathopoulos GT, Kalomenidis I. Animal models of malignant pleural effusion. Curr Opin Pulm Med. 2009;15(4):343–52. https://doi.org/10.1097/MCP.0b013e32832af07c.

    Article  PubMed  Google Scholar 

  9. Bradshaw M, Mansfield A, Peikert T. The role of vascular endothelial growth factor in the pathogenesis, diagnosis and treatment of malignant pleural effusion. Curr Oncol Rep. 2013;15(3):207–16. https://doi.org/10.1007/s11912-013-0315-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin T, Wang G, He S, Shen G, Su C, Zhang Y, et al. Malignant pleural effusion and ascites induce epithelial-mesenchymal transition and cancer stem-like cell properties via the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. J Biol Chem. 2016;291(52):26750–61. https://doi.org/10.1074/jbc.M116.753236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al. Production of experimental malignant pleural effusions is dependent on invasion of the pleura and expression of vascular endothelial growth factor/vascular permeability factor by human lung cancer cells. Am J Pathol. 2000;157(6):1893–903. https://doi.org/10.1016/S0002-9440(10)64828-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN, et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res. 2007;67(20):9825–34. https://doi.org/10.1158/0008-5472.CAN-07-1064.

    Article  CAS  PubMed  Google Scholar 

  13. Ho CC, Liao WY, Wang CY, Lu YH, Huang HY, Chen HY, et al. TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med. 2008;177(7):763–70. https://doi.org/10.1164/rccm.200704-641OC.

    Article  CAS  PubMed  Google Scholar 

  14. • Thomas R, Cheah HM, Creaney J, Turlach BA, Lee YC. Longitudinal measurement of pleural fluid biochemistry and cytokines in malignant pleural effusions. Chest. 2016;149(6):1494–1500. The first study describing the alteration of cytokines and biomarkers over time in malignant pleural effusions. https://doi.org/10.1016/j.chest.2016.01.001.

    Article  PubMed  Google Scholar 

  15. Stathopoulos GT, Psallidas I, Moustaki A, Moschos C, Kollintza A, Karabela S, et al. A central role for tumor-derived monocyte chemoattractant protein-1 in malignant pleural effusion. J Natl Cancer Inst. 2008;100(20):1464–76. https://doi.org/10.1093/jnci/djn325.

    Article  CAS  PubMed  Google Scholar 

  16. Qian Q, Sun W, Zhu W, Liu Y, Ge A, Ma Y, et al. The role of microRNA-93 regulating angiopoietin2 in the formation of malignant pleural effusion. Cancer medicine. 2017;6(5):1036–48. https://doi.org/10.1002/cam4.1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gopinathan G, Milagre C, Pearce OM, Reynolds LE, Hodivala-Dilke K, Leinster DA, et al. Interleukin-6 stimulates defective angiogenesis. Cancer Res. 2015;75(15):3098–107. https://doi.org/10.1158/0008-5472.CAN-15-1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holopainen T, Saharinen P, D'Amico G, Lampinen A, Eklund L, Sormunen R, et al. Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012;104(6):461–75. https://doi.org/10.1093/jnci/djs009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamiya M, Tamiya A, Yasue T, Nakao K, Omachi N, Shiroyama T, et al. Vascular endothelial growth factor in plasma and pleural effusion is a biomarker for outcome after bevacizumab plus carboplatin-paclitaxel treatment for non-small cell lung cancer with malignant pleural effusion. Anticancer Res. 2016;36(6):2939–44.

    CAS  PubMed  Google Scholar 

  20. Giannou AD, Marazioti A, Spella M, Kanellakis NI, Apostolopoulou H, Psallidas I, et al. Mast cells mediate malignant pleural effusion formation. J Clin Invest. 2015;125(6):2317–34. https://doi.org/10.1172/JCI79840.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077–80. https://doi.org/10.1158/0008-5472.CAN-07-3293.

    Article  CAS  PubMed  Google Scholar 

  22. Inamura K. Lung cancer: understanding its molecular pathology and the 2015 WHO classification. Front Oncol. 2017;7:193. https://doi.org/10.3389/fonc.2017.00193.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4(2):156–64. https://doi.org/10.3978/j.issn.2218-6751.2014.11.11.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan L, Alexander M, Officer A, et al. Survival difference according to mutation status in a prospective cohort study of Australian patients with metastatic non-small-cell lung carcinoma. Intern Med J. 2018;48(1):37–44. https://doi.org/10.1111/imj.13491.

  25. Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77. https://doi.org/10.1056/NEJMoa1408440.

    Article  PubMed  Google Scholar 

  26. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57. https://doi.org/10.1056/NEJMoa0810699.

    Article  CAS  PubMed  Google Scholar 

  27. Park K, Yu CJ, Kim SW, Lin MC, Sriuranpong V, Tsai CM, et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in Asian patients with epidermal growth factor receptor mutation-positive non-small-cell lung cancer: the ASPIRATION study. JAMA oncology. 2016;2(3):305–12. https://doi.org/10.1001/jamaoncol.2015.4921.

    Article  PubMed  Google Scholar 

  28. Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. The Lancet Oncology. 2016;17(5):577–89. https://doi.org/10.1016/S1470-2045(16)30033-X.

    Article  CAS  PubMed  Google Scholar 

  29. Porcel JM, Gasol A, Bielsa S, Civit C, Light RW, Salud A. Clinical features and survival of lung cancer patients with pleural effusions. Respirology. 2015;20(4):654–9. https://doi.org/10.1111/resp.12496.

    Article  PubMed  Google Scholar 

  30. Renaud S, Seitlinger J, Falcoz PE, Schaeffer M, Voegeli AC, Legrain M, et al. Specific KRAS amino acid substitutions and EGFR mutations predict site-specific recurrence and metastasis following non-small-cell lung cancer surgery. Br J Cancer. 2016;115(3):346–53. https://doi.org/10.1038/bjc.2016.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science (New York, NY). 1984;223(4637):661–4. https://doi.org/10.1126/science.6695174.

    Article  CAS  Google Scholar 

  32. Agalioti T, Giannou AD, Krontira AC, Kanellakis NI, Kati D, Vreka M, et al. Mutant KRAS promotes malignant pleural effusion formation. Nat Commun. 2017;8:15205. https://doi.org/10.1038/ncomms15205.

    Article  CAS  PubMed  Google Scholar 

  33. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67. https://doi.org/10.1056/NEJMoa0904554.

    Article  CAS  PubMed  Google Scholar 

  34. Zou J, Bella AE, Chen Z, Han X, Su C, Lei Y, et al. Frequency of EGFR mutations in lung adenocarcinoma with malignant pleural effusion: implication of cancer biological behaviour regulated by EGFR mutation. The Journal of international medical research. 2014;42(5):1110–7. https://doi.org/10.1177/0300060514539273.

    Article  CAS  PubMed  Google Scholar 

  35. Verma A, Chopra A, Lee YW, Bharwani LD, Asmat AB, Aneez DB, et al. Can EGFR-tyrosine kinase inhibitors (TKI) alone without talc pleurodesis prevent recurrence of malignant pleural effusion (MPE) in lung adenocarcinoma. Curr Drug Discov Technol. 2016;13(2):68–76. https://doi.org/10.2174/1570163813666160524142846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smits AJ, Kummer JA, Hinrichs JW, Herder GJ, Scheidel-Jacobse KC, Jiwa NM, et al. EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cellular oncology (Dordrecht). 2012;35(3):189–96. https://doi.org/10.1007/s13402-012-0078-4.

    Article  CAS  Google Scholar 

  37. Wu SG, Yu CJ, Tsai MF, Liao WY, Yang CH, Jan IS, et al. Survival of lung adenocarcinoma patients with malignant pleural effusion. Eur Respir J. 2013;41(6):1409–18. https://doi.org/10.1183/09031936.00069812.

    Article  PubMed  Google Scholar 

  38. Park S, Holmes-Tisch AJ, Cho EY, Shim YM, Kim J, Kim HS, et al. Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J Thoracic oncology : official publication of the International Association for the Study of Lung Cancer. 2009;4(7):809–15. https://doi.org/10.1097/JTO.0b013e3181a94af4.

    Article  Google Scholar 

  39. Lee JG, Wu R. Erlotinib-cisplatin combination inhibits growth and angiogenesis through c-MYC and HIF-1alpha in EGFR-mutated lung cancer in vitro and in vivo. Neoplasia. 2015;17(2):190–200. https://doi.org/10.1016/j.neo.2014.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai MF, Chang TH, Wu SG, Yang HY, Hsu YC, Yang PC, et al. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep. 2015;5(1):13574. https://doi.org/10.1038/srep13574.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ho YS, Yip LY, Basri N, Chong VS, Teo CC, Tan E, et al. Lipidomic profiling of lung pleural effusion identifies unique metabotype for EGFR mutants in non-small cell lung cancer. Sci Rep. 2016;6(1):35110. https://doi.org/10.1038/srep35110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vacaresse N, Lajoie-Mazenc I, Auge N, Suc I, Frisach MF, Salvayre R, et al. Activation of epithelial growth factor receptor pathway by unsaturated fatty acids. Circ Res. 1999;85(10):892–9. https://doi.org/10.1161/01.RES.85.10.892.

    Article  CAS  PubMed  Google Scholar 

  43. Zhong J, Li X, Bai H, Zhao J, Wang Z, Duan J, et al. Malignant pleural effusion cell blocks are substitutes for tissue in EML4-ALK rearrangement detection in patients with advanced non-small-cell lung cancer. Cytopathology. 2016;27(6):433–43. https://doi.org/10.1111/cyt.12322.

    Article  CAS  PubMed  Google Scholar 

  44. Liu L, Zhan P, Zhou X, Song Y, Zhou X, Yu L, et al. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3):e0117032. https://doi.org/10.1371/journal.pone.0117032.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martinengo C, Poggio T, Menotti M, Scalzo MS, Mastini C, Ambrogio C, et al. ALK-dependent control of hypoxia-inducible factors mediates tumor growth and metastasis. Cancer Res. 2014;74(21):6094–106. https://doi.org/10.1158/0008-5472.CAN-14-0268.

    Article  CAS  PubMed  Google Scholar 

  46. Masago K, Fujimoto D, Fujita S, Hata A, Kaji R, Ohtsuka K, et al. Response to bevacizumab combination chemotherapy of malignant pleural effusions associated with non-squamous non-small-cell lung cancer. Mol Clin Oncol. 2015;3(2):415–9. https://doi.org/10.3892/mco.2014.457.

    Article  PubMed  Google Scholar 

  47. Han HS, Eom DW, Kim JH, Kim KH, Shin HM, An JY, et al. EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: discordance in pleural metastases. Clin Lung Cancer. 2011;12(6):380–6. https://doi.org/10.1016/j.cllc.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  48. Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J, Stathopoulos E, Georgoulias V, et al. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer. 2008;99(6):923–9. https://doi.org/10.1038/sj.bjc.6604629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gow CH, Chang YL, Hsu YC, Tsai MF, Wu CT, Yu CJ, et al. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol. 2009;20(4):696–702. https://doi.org/10.1093/annonc/mdn679.

    Article  PubMed  Google Scholar 

  50. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21. https://doi.org/10.1056/NEJMoa1616288.

    Article  CAS  PubMed  Google Scholar 

  51. • Porcel JM, Lui MM, Lerner AD, Davies HE, Feller-Kopman D, Lee YC. Comparing approaches to the management of malignant pleural effusions. Expert Rev Respir Med. 2017;11(4):273–284. A comprehensive review summarizing the current state-of-the-art in approach to management of malignant pleural effusions. https://doi.org/10.1080/17476348.2017.1300532.

    Article  CAS  PubMed  Google Scholar 

  52. Lin JB, Lai FC, Li X, Tu YR, Lin M, Qiu ML, et al. Sequential treatment strategy for malignant pleural effusion in non-small cell lung cancer with the activated epithelial grow factor receptor mutation. J Drug Target. 2017;25(2):119–24. https://doi.org/10.1080/1061186X.2016.1200590.

    Article  CAS  PubMed  Google Scholar 

  53. Yildirim H, Metintas M, Ak G, Metintas S, Erginel S. Predictors of talc pleurodesis outcome in patients with malignant pleural effusions. Lung Cancer. 2008;62(1):139–44. https://doi.org/10.1016/j.lungcan.2008.02.017.

    Article  PubMed  Google Scholar 

  54. Barbetakis N, Asteriou C, Papadopoulou F, Samanidis G, Paliouras D, Kleontas A, et al. Early and late morbidity and mortality and life expectancy following thoracoscopic talc insufflation for control of malignant pleural effusions: a review of 400 cases. J Cardiothorac Surg. 2010;5(1):27. https://doi.org/10.1186/1749-8090-5-27.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Thomas R, Jenkins S, Eastwood PR, Lee YC, Singh B. Physiology of breathlessness associated with pleural effusions. Curr Opin Pulm Med. 2015;21(4):338–45. https://doi.org/10.1097/MCP.0000000000000174.

    Article  PubMed  PubMed Central  Google Scholar 

  56. • Lui MM, Fitzgerald DB, Lee YC. Phenotyping malignant pleural effusions. Curr Opin Pulm Med. 2016;22(4):350–355. A review on the important factors and various phenotypes under the umbrella of malignant pleural effusions, which could affect the options of fluid control measures. https://doi.org/10.1097/MCP.0000000000000267.

    Article  PubMed  Google Scholar 

  57. Cardillo G, Facciolo F, Carbone L, Regal M, Corzani F, Ricci A, et al. Long-term follow-up of video-assisted talc pleurodesis in malignant recurrent pleural effusions. Eur J Cardiothorac Surg. 2002;21(2):302–305; discussion 5–6. https://doi.org/10.1016/S1010-7940(01)01130-7.

    Article  CAS  PubMed  Google Scholar 

  58. • Davies HE, Mishra EK, Kahan BC, Wrightson JM, Stanton AE, Guhan A, et al. Effect of an indwelling pleural catheter vs chest tube and talc pleurodesis for relieving dyspnea in patients with malignant pleural effusion: the TIME2 randomized controlled trial. JAMA : the journal of the American Medical Association. 2012;307(22):2383–2389. A landmark randomized controlled trial with head-to-head comparison of indwelling pleural catheter versus talc pleurodesis in patient-reported outcomes. https://doi.org/10.1001/jama.2012.5535.

    Article  CAS  PubMed  Google Scholar 

  59. Fysh ETH, Waterer GW, Kendall PA, Bremner PR, Dina S, Geelhoed E, et al. Indwelling pleural catheters reduce inpatient days over pleurodesis for malignant pleural effusion. Chest. 2012;142(2):394–400. https://doi.org/10.1378/chest.11-2657.

    Article  PubMed  Google Scholar 

  60. • Lui MM, Thomas R, Lee YC. Complications of indwelling pleural catheter use and their management. BMJ Open Respir Res. 2016;3(1):e000123. A summary on the understanding of IPC-related complications, and measures to tackle these complications. https://doi.org/10.1136/bmjresp-2015-000123.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fysh ET, Thomas R, Read CA, Kwan BC, Yap E, Horwood FC, et al. Protocol of the Australasian Malignant Pleural Effusion (AMPLE) trial: a multicentre randomised study comparing indwelling pleural catheter versus talc pleurodesis. BMJ Open. 2014;4(11):e006757. https://doi.org/10.1136/bmjopen-2014-006757.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Azzopardi M, Thomas R, Muruganandan S, Lam DC, Garske LA, Kwan BC, et al. Protocol of the Australasian Malignant Pleural Effusion-2 (AMPLE-2) trial: a multicentre randomised study of aggressive versus symptom-guided drainage via indwelling pleural catheters. BMJ Open. 2016;6(7):e011480. https://doi.org/10.1136/bmjopen-2016-011480.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macy Mei-sze Lui.

Ethics declarations

Conflict of Interest

Macy Lui, Macy Mei-sze, Hoi-Hin, Ka-Yan, and David Chi-Leung declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pleural Diseases and Mesothelioma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, M.Ms., Kwok, HH., Chiang, KY. et al. Malignant Pleural Effusion from Lung Cancers with Driver Mutations. Curr Pulmonol Rep 7, 13–18 (2018). https://doi.org/10.1007/s13665-018-0196-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-018-0196-1

Keywords

Navigation