Skip to main content

Advertisement

Log in

Combat Venous Thromboembolism

  • Pulmonology in Combat Medicine (G Eapen, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Service members (SMs) injured by high energy weapons are at increased risk for hemorrhagic shock and venous thromboembolism (VTE). Military physicians must decide when to initiate thromboprophylaxis or therapeutic anticoagulation in combat casualties after massive transfusion and multiple surgeries.

Recent Findings

Resuscitation with blood components is associated with VTE in the combat casualty, as are amputation and injury from improvised explosive devices (IEDs). There are no formalized scores available to estimate VTE and bleeding risk for the trauma patient. The optimal agent and dosing regimen for chemoprophylaxis have not yet been identified. Diagnosis will generally be made by imaging studies, and modern CT scanners identify emboli that may not need to be treated. When treatment is indicated, duration is a minimum of 3 months.

Summary

Combat casualties suffer higher VTE rates than their civilian counterparts do. Prophylaxis, diagnosis, and treatment are challenging. Future research should focus on risk scores to be used on admission and the proper approach to isolated subsegmental pulmonary embolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Geerts WR, Code KI, Jay RM, Chen E, Szalai JP. A prospective study of venous thromboembolism after major trauma. N Engl J Med. 1994;331(24):1601–6.

    Article  CAS  PubMed  Google Scholar 

  2. Paffrath T, Wafaisade A, Lefering R, Simanski S, Bouillon B, Spanholtz T, et al. Venous thromboembolism after severe trauma: incidence, risk factorsand outcome. Injury. 2010;41:97–101.

    Article  PubMed  Google Scholar 

  3. US Army Medical Department, Institute of Surgical Research. Management of pain, anxiety, and delirium in injured warfighters. Joint Theater Trauma System Clinical Practice Guideline. 2013;Fort Sam Houston, TX: ISR; 201:http://www.usaisr.amedd.army.mil/cpgs/Management_of_Pain_Anxiety_and%20Delirium_25_Apr_2013.pdf. Accessed December 2012nd, 2016.

  4. •• Holley AB, Petteys S, Mitchell JD, Holley PR, Colleen JF. Thromboprophylaxis and VTE rates in soldiers wounded in operation enduring freedom and operation Iraqi freedom. Chest. 2013;144(3):966–73. This study provides overall VTE rates for service members being evacuated from the Middle East following injury. daily administration of chemoprophylaxis is tracked, as are specific VTE and bleeding events

    Article  PubMed  Google Scholar 

  5. Gillern SM, Sheppard FR, Evans KN, Graybill C, Gage FA, Forsberg JA, et al. Incidence of pulmonary embolus in combat casualties with extremity amputations and fractures. The Journal of TRAUMA® Injury, Infection, and Critical Care. 2011;71(3):607–13.

    Article  Google Scholar 

  6. Hannon M, Tadlock MD, Melcer T, Walker J, Bandle J, Nieses K, et al. Venous thromboembolism after traumatic amputation: an analysis of 366 combat casualties. Am J Surg. 2016;212(2):230–4.

    Article  PubMed  Google Scholar 

  7. Hutchison TN, Krueger CA, Berry JS, Aden JK, Cohn SM, White CE. Venous thromboembolism during combat operations: a 10-y review. J Surg Res. 2013;187(2):625–30.

    Article  PubMed  Google Scholar 

  8. Holley A, Petteys S, Mitchell JD, et al. Venous thromboembolism prophylaxis for patients receiving regional anesthesia following injury in Iraq and Afghanistan. J Trauma Acute Care Surg. 2014;76:152–9.

    Article  CAS  PubMed  Google Scholar 

  9. Williams TK, Clouse WD. Current concepts in repair of extremity venousinjury. Journal of Vascular Surgery: Venous and Lymphatic Disorders. 2016;4(2):238–47.

    PubMed  Google Scholar 

  10. Clouse WD, Rasmussen TE, Peck MA, Eliason JL, Cox MW, Bowser AN, Jenkins DH, et al. In-theater management of vascular injury: 2 years of the Balad vascular registry. J Am Coll Surg. 2007;204(4):625–32.

    Article  PubMed  Google Scholar 

  11. Whiting PS, Jahangir A. Thromboembolic disease after orthopedic trauma. Orthop Clin N Am. 2016;47(2):335–44.

    Article  Google Scholar 

  12. Owen BA, Xue A, Heit JA, et al. Procoagulant activity, but not number, of microparticles increases with age and in individuals after a single venous thromboembolism. Thromb Res. 2011;127(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  13. Philbrick JT, Shumate R, Siadaty MS, Becker DM. Air travel and venous thromboembolism: a systematic review. Society of General Internal Medicine. 2007;22(1):107–14.

    Article  Google Scholar 

  14. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13.

    Article  PubMed  Google Scholar 

  15. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study. JAMA Surg. 2013;148(2):127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Knudson MM, Collins JA, Goodman SB, McCrory DW. Thromboembolism following multiple trauma. J Trauma. 1992;32:2–11.

    Article  CAS  PubMed  Google Scholar 

  17. Zander AL, Olson EJ, Van Gent J, Bandle J, Calvo RY, Shackford SR, et al. Does resuscitation with plasma increase the risk of venous thromboembolism? J Trauma Acute Care Surg. 2015;78(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  18. Cook D, Crowther M, Meade M, Rabbat C, Griffith L, Schiff D, Geerts WH, et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005;33(7):1565–71.

    Article  PubMed  Google Scholar 

  19. Joint Theater Trauma System Clinical Practice Guideline: damage control resuscitation at level IIb/III treatment facilities http://www.usaisr.amedd.army.mil/cpgs/Damage%20Control%20Resuscitation%20-%201%20Feb%202013.pdf (accessed December 15th, 2016). 2013.

  20. Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. The Cochrane Collaboration. 2012 (4).

  21. Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with signifi cant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376:23–32.

    Article  CAS  PubMed  Google Scholar 

  22. Gould M, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest. 2012;141(Suppl):e227S–77S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogers F, Cipolle MD, Velmahos G, et al. Practice management guidelines for the prevention of venous thromboembolism in trauma patients: the EAST practice management guidelines work group. J Trauma. 2002;53:142–64.

    Article  PubMed  Google Scholar 

  24. Decousus H, Tapson VF, Bergmann JF, Chong BH, Froehlich JB, Kakkar AK, et al. Factors at admission associated with bleeding risk in medical patients: findings from the IMPROVE investigators. Chest. 2011;139(1):69–79.

    Article  PubMed  Google Scholar 

  25. Spyropoulos AC, Anderson FA, Fitzgerald G, Decousus H, Pini M, Chong BH, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140(3):706–14.

    Article  PubMed  Google Scholar 

  26. Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua prediction score. J Thromb Haemost. 2010;8:2450–7.

    Article  CAS  PubMed  Google Scholar 

  27. Rogers S, Kilaru RK, Hosokawa P, et al. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007;204:1211–21.

    Article  PubMed  Google Scholar 

  28. Caprini J, Arcelus JI, Hasty JH, et al. Clinical assessment of venous thromboembolic risk in surgical patients. Semin Thromb Hemost. 1991;17(suppl 3):304–12.

    PubMed  Google Scholar 

  29. Decousus H, Leivorovicz A, Parent F, et al. A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis. N Engl J Med. 1998;338:409–15.

    Article  CAS  PubMed  Google Scholar 

  30. Decousus H, Barral FG, Buchmuller-Cordier A, et al. Eight-year follow-up of patients with permanent vena cava filters in the prevention of pulmonary embolism: the PREPIC (Prévention du Risque d’Embolie Pulmonaire par interruption cave) randomized study. Circulation. 2005;112:416–22.

    Article  Google Scholar 

  31. Grabo D, Seery J, Bradley M, et al Joint trauma system clinical practice guideline (JTS CPG): The prevention of deep venous thrombosis—inferior vena cava filter. 2016 http://www.usaisr.amedd.army.mil/cpgs/Prevent_Deep_Venous_Thrombosis_IVC_Filter_02_Aug_2016.pdf.

  32. Geerts W, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest. 2008;133:381S–453S.

    Article  CAS  PubMed  Google Scholar 

  33. JTTS clinical practice guidelines for the prevention of deep venous thrombosis. Defense Medical Readiness Training Institute website. www.dmrti.army.mil/documents/2008_04_DVT%20CPG.doc. Updated April 2008. (Accessed January 10, 2013). 2008.

  34. Geerts W, Jay RM, Code KI, et al. A comparison of low-dose heparin with low-molecular-weight heparin as prophylaxis against venous thromboembolism after major trauma. N Engl J Med. 1996;335:701–97.

    Article  CAS  PubMed  Google Scholar 

  35. Malinoski D, Jafari F, Ewing T, et al. Standard prophylactic enoxaparin dosing leads to inadequate anti-Xa levels and increased deep venous thrombosis rates in critically ill trauma and surgical patients. J Trauma. 2010;68:874–80.

    Article  CAS  PubMed  Google Scholar 

  36. •• Ko A, Harada MY, Barmparas G, et al. Association between enoxaparin dosage adjusted by anti–factor Xa trough level and clinically evident venous thromboembolism after trauma. JAMA Surg. 2016;151:1006–13. This study found enoxaparin prophylaxis at standard dosing (30 mg SQ BID) was associated with inadequate anti-Xa levels and higher VTE rates. Increasing dosing to 40 mg SQ BID reduced VTE rates

    Article  PubMed  Google Scholar 

  37. Greenfield L, Proctor MC, Rodriguez JL, et al. Posttrauma thromboembolism prophylaxis. J Trauma. 1997;42:100–3.

    Article  CAS  PubMed  Google Scholar 

  38. Arnold J, Dart BW, Barker DE, et al. Unfractionated heparin three times a day versus enoxaparin in the prevention of deep venous thrombosis in trauma patients. Am Surg. 2010;76:563–70.

    PubMed  Google Scholar 

  39. Thorson C, Ryan ML, Van Haren RM, et al. Venous thromboembolism after trauma: a never event? Crit Care Med. 2012;40:2967–73.

    Article  PubMed  Google Scholar 

  40. Le Gal G, Perrier A. Contemporary approach to the diagnosis of non-massive pulmonary embolism. Curr Opin Pulm Med. 2006;12:291–8.

    Article  PubMed  Google Scholar 

  41. Douma R, Mos ICM, Erkens PMG, et al. Performance of 4 clinical decision rules in the diagnostic management of acute pulmonary embolism: a prospective cohort study. Ann Intern Med. 2011;154:709–18.

    Article  PubMed  Google Scholar 

  42. Modi S, Deisler R, Gozel K, Reicks P, Irwin E, Brunsvold M, Banton K, et al. Wells criteria for DVT is a reliable clinical tool to assess the risk of deep venous thrombosis in trauma patients. World Journal of Emergency Surgery. 2016;11(24):1–6.

    Google Scholar 

  43. Wahl WL, Ahrns KS, Zajkowski PJ, Brandt M, Proctor M, Arbabi S, et al. Normal D-dimer levels do not exclude thrombotic complications in trauma patients. Surgery. 2003;134(4):529–32.

    Article  PubMed  Google Scholar 

  44. Shuichi H, Kiyohiro O, Makoto A, Masato M, Koichi I, Kaneko M, Kazumi F, Nakamura T, et al. Usefulness of fibrin degradation products and d-dimer levels as biomarkers that reflect the severity of trauma. J Trauma Acute Care Surg. 2013;74(5):1275–8.

    Article  Google Scholar 

  45. Karami-Djurabi R, Klok FA, Kooiman J, Velthuis SI, Nijkeuter M, Huisman MV D-dimer testing in patients with suspected pulmonary embolism and impaired renal function. Am J Med. 2009;3(32).

  46. Robert-Ebadi H, Bertoletti L, Combescure C, Le Gal G, Bounameaux H, Righini M. Effects of impaired renal function on levels and performance of D-dimer in patients with suspected pulmonary embolism. Thromb Haemost. 2014;112(9):614–20.

    Article  CAS  PubMed  Google Scholar 

  47. Ahuja RB, Bansal P, Pradhan GS, Subberwal M. An analysis of deep vein thrombosis in burn patients (part 1): comparison of D-dimer and Doppler ultrasound as screening tools Burns. 2016.

  48. Bates S, Jaeschke R, Stevens SM, et al. Diagnosis of DVT: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e351S–418S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kearon C, Akl EA, Omelas J, et al. Antithrombotic therapy for VTE disease: CHEST guidelines and expert panel report. Chest. 2016;149:315–52.

    Article  PubMed  Google Scholar 

  50. Stein P, Fowler SE, Goodman LR, et al. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006;354:2317–27.

    Article  CAS  PubMed  Google Scholar 

  51. Moores L, Jackson Jr WL, Shorr AF, Jackson JL. Meta-analysis: outcomes in patients with suspected pulmonary embolism managed with computed tomographic pulmonary angiography. Ann Intern Med. 2004;141:866–74.

    Article  PubMed  Google Scholar 

  52. Anderson D, Kahn SR, Rodger MA, et al. Computed tomographic pulmonary angiography vs ventilation-perfusion lung scanning in patients with suspected pulmonary embolism: a randomized controlled trial. JAMA. 2007;298:2743–53.

    Article  CAS  PubMed  Google Scholar 

  53. The PIOPED Investigators. Value of the ventilation/perfusion scan in acute pulmonary embolism: results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA. 1990;263:2753–9.

    Article  Google Scholar 

  54. Einstein A, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–23.

    Article  CAS  PubMed  Google Scholar 

  55. Tapson V. Medical progress: acute pulmonary embolism. N Engl J Med. 2008;358:1037–52.

    Article  CAS  PubMed  Google Scholar 

  56. Merli G. Diagnostic assessment of deep vein thrombosis and pulmonary embolism. Am J Med. 2005;118:3S–12S.

    Article  PubMed  Google Scholar 

  57. Ryan E, Kok HK, Lee MJ. Retrievable IVC filters—friend or foe. Surg J R Coll Surg Edinburgh and Ireland. 2016 1–5.

  58. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease CHEST guideline and expert panel report. Chest. 2016;149(2):315–52.

    Article  PubMed  Google Scholar 

  59. KA: W. Pharmacology. In: Finkel R, Panavelil TA, editors. Wolters Kluwer. 2015:299–301.

  60. Heegard KD, Stewart IJ, Cap AP, Sosnov JA, Kwan HK, Glass KR, et al. Early acute kidney injury in military casualties. J Trauma Acute Care Surg. 2015;78(5):988–93.

    Article  PubMed  Google Scholar 

  61. Garcia DA, Baglin TP, Weitz JI, Samama MM. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e24–43.

    Article  CAS  Google Scholar 

  62. King C, Holley AB, Moores LK. Moving toward a more ideal anticoagulant: the oral direct thrombin and factor Xa inhibitors. Chest. 2013;143:1106–16.

    Article  CAS  PubMed  Google Scholar 

  63. Pollack CJ, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373:511–20.

    Article  CAS  PubMed  Google Scholar 

  64. Siegal D, Cuker A. Reversal of target specific oral anticoagulants. Drug Discov Today. 2014;19:1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burnett A, Mahan CE, Vazquez SR, et al. Guidance for the practical management of the direct oral anticoagulants (DOACs) in VTE treatment. J Thromb Thrombolysis. 2016;41:206–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Donato A, Khoche S, Santora J, et al. Clinical outcomes in patients with isolated subsegmental pulmonary emboli diagnosed by multidetector pulmonary CT angiography. Thromb Res. 2010;126:e266–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Holley.

Ethics declarations

Conflict of Interest

Matthew Koroscil and Aaron Holley declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pulmonology in Combat Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroscil, M., Holley, A. Combat Venous Thromboembolism. Curr Pulmonol Rep 6, 124–130 (2017). https://doi.org/10.1007/s13665-017-0173-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-017-0173-0

Keywords

Navigation