Skip to main content

Advertisement

Log in

New insights on pleural fluid formation: potential translational targets

  • Pleural Diseases and Mesothelioma (G Lee, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Pleural effusion is a very common clinical problem associated with a multitude of different underlying conditions, including infection, heart failure, and cancer. Current treatments for pleural effusion often aim at symptom relief rather than at treating its underlying cause. Recent investigations have provided new insights into the mechanisms of fluid accumulation in the pleural space and hence hope for clinical translation of the novel therapy to stop fluid formation. Here, we discuss the major mechanistic findings of recent basic, translational, and clinical studies that have aimed at tackling the management and the pathobiology of the most common types of pleural effusions. In addition, we analyze the current and potential future uses of these novel data in the management of patients with pleural effusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Thomas R, Lee YC. Causes and management of common benign pleural effusions. Thorac Surg Clin. 2013;23(1):25–42.

    Article  PubMed  Google Scholar 

  2. Clive AO et al. Individualised management of malignant pleural effusion. Lancet Respir Med. 2015;3(7):505–6.

    Article  PubMed  Google Scholar 

  3. Burgers JA et al. Pleural drainage and pleurodesis: implementation of guidelines in four hospitals. Eur Respir J. 2008;32(5):1321–7.

    Article  CAS  PubMed  Google Scholar 

  4. Xia H et al. Efficacy and safety of talc pleurodesis for malignant pleural effusion: a meta-analysis. PLoS One. 2014;9(1), e87060.

    Article  PubMed Central  PubMed  Google Scholar 

  5. DeBiasi EM et al. Mortality among patients with pleural effusion undergoing thoracentesis. Eur Respir J. 2015;46(2):495–502.

    Article  PubMed  Google Scholar 

  6. Rahman NM et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N Engl J Med. 2011;365:518–26.

    Article  CAS  PubMed  Google Scholar 

  7. Lansley SM et al. Tissue plasminogen activator potently stimulates pleural effusion via a monocyte chemotactic protein-1-dependent mechanism. Am J Respir Cell Mol Biol. 2015;53(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  8. Grau I et al. Invasive pneumococcal disease in healthy adults: increase of empyema associated with the clonal-type Sweden(1)-ST306. PLoS One. 2012;7(8), e42595.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Picazo J et al. Impact of introduction of conjugate vaccines in the vaccination schedule on the incidence of pediatric invasive pneumococcal disease requiring hospitalization in Madrid 2007 to 2011. Pediatr Infect Dis J. 2013;32(6):656–61.

    Article  PubMed  Google Scholar 

  10. Tang Y et al. Different subsets of macrophages in patients with new onset tuberculous pleural effusion. PLoS One. 2014;9(2), e88343.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Tjon AS et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J Immunol. 2014;192(12):5625–34.

    Article  CAS  PubMed  Google Scholar 

  12. Verway M et al. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog. 2013;9(6):e1003407. An elegant study that identifies for the first time how inflammatory host-pathogen interactions control the clinical course of pleuropulmonary tuberculosis infection.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Han ZJ et al. Diagnostic accuracy of natriuretic peptides for heart failure in patients with pleural effusion: a systematic review and updated meta-analysis. PLoS One. 2015;10(8), e0134376.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Freeman RK et al. A propensity-matched comparison of pleurodesis or tunneled pleural catheter for heart failure patients with recurrent pleural effusion. Ann Thorac Surg. 2014;97(6):1872–6.

    Article  PubMed  Google Scholar 

  15. Oka T et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485(7397):251–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Abbate A et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Van Tassell BW et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol. 2014;113(2):321–7.

    Article  PubMed  Google Scholar 

  18. Ryu JS et al. Prognostic impact of minimal pleural effusion in non-small-cell lung cancer. J Clin Oncol. 2014;32(9):960–7. An observational study that describes the clinical importance of pleural effusions in patients with lung cancer.

    Article  PubMed  Google Scholar 

  19. Davies HE et al. Effect of an indwelling pleural catheter vs chest tube and talc pleurodesis for relieving dyspnea in patients with malignant pleural effusion: the TIME2 randomized controlled trial. JAMA. 2012;307(22):2383–9.

    Article  CAS  PubMed  Google Scholar 

  20. Clive AO et al. Predicting survival in malignant pleural effusion: development and validation of the LENT prognostic score. Thorax. 2014;69(12):1098–104.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stathopoulos GT, Kalomenidis I. Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med. 2012;186(6):487–92.

    Article  PubMed  Google Scholar 

  22. Moschos C et al. Osteopontin is upregulated in malignant and inflammatory pleural effusions. Respirology. 2009;14(5):716–22.

    Article  PubMed  Google Scholar 

  23. Psallidas I et al. Secreted phosphoprotein-1 directly provokes vascular leakage to foster malignant pleural effusion. Oncogene. 2013;32(4):528–35. An elegant experimental study describing the differential impact of both host- and tumor-derived osteopontin on distinct aspects of MPE pathobiology.

    Article  CAS  PubMed  Google Scholar 

  24. Kale S et al. Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin. Oncogene. 2015;34(42):5408–10.

    Article  CAS  PubMed  Google Scholar 

  25. Raja R et al. Hypoxia-driven osteopontin contributes to breast tumor growth through modulation of HIF1α-mediated VEGF-dependent angiogenesis. Oncogene. 2014;33(16):2053–64.

    Article  CAS  PubMed  Google Scholar 

  26. Stathopoulos GT et al. A central role for tumor-derived monocyte chemoattractant protein-1 in malignant pleural effusion. J Natl Cancer Inst. 2008;100(20):1464–76.

    Article  CAS  PubMed  Google Scholar 

  27. Marazioti A et al. Beneficial impact of CCL2 and CCL12 neutralization on experimental malignant pleural effusion. PLoS One. 2013;8(8), e71207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Stathopoulos GT et al. Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol. 2006;34(2):142–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Stathopoulos GT et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res. 2007;67(20):9825–34.

    Article  CAS  PubMed  Google Scholar 

  30. Psallidas I et al. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer. 2010;9:56.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yeh HH et al. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene. 2006;25(31):4300–9.

    Article  CAS  PubMed  Google Scholar 

  32. Yeh HH et al. Upregulation of tissue factor by activated Stat3 contributes to malignant pleural effusion generation via enhancing tumor metastasis and vascular permeability in lung adenocarcinoma. PLoS One. 2013;8(9), e75287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Giannou AD et al. Mast cells mediate malignant pleural effusion formation. J Clin Invest. 2015;125(6):2317–34. An extended experimental and human study describing the discovery of mast cells in malignant pleural effusions and the investigations of their functions to promote disease progression.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Smits AJ et al. EGFR and KRAS mutations in lung carcinomas in the Dutch population: increased EGFR mutation frequency in malignant pleural effusion of lung adenocarcinoma. Cell Oncol (Dordr). 2012;35(3):189–96.

    Article  CAS  Google Scholar 

  35. Liu D et al. Malignant pleural effusion supernatants are substitutes for metastatic pleural tumor tissues in EGFR mutation test in patients with advanced lung adenocarcinoma. PLoS One. 2014;9(2), e89946.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Liu L et al. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3), e0117032.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Tsai TH et al. Clinical and prognostic implications of RET rearrangements in metastatic lung adenocarcinoma patients with malignant pleural effusion. Lung Cancer. 2015;88(2):208–14.

    Article  PubMed  Google Scholar 

  38. Raparia K et al. Peripheral lung adenocarcinomas with KRAS mutations are more likely to invade visceral pleura. Arch Pathol Lab Med. 2015;139(2):189–93.

    Article  PubMed  Google Scholar 

  39. Tsai MF et al. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci Rep. 2015;5:13574.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Guo H et al. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy. Oncol Rep. 2012;27(3):880–90.

    CAS  PubMed  Google Scholar 

  41. Masago K et al. Plasma and pleural fluid pharmacokinetics of erlotinib and its active metabolite OSI-420 in patients with non-small-cell lung cancer with pleural effusion. Clin Lung Cancer. 2011;12(5):307–12.

    Article  CAS  PubMed  Google Scholar 

  42. Kubo A et al. Malignant pleural effusion from lung adenocarcinoma treated by gefitinib. Intern Med. 2011;50(7):745–8.

    Article  CAS  PubMed  Google Scholar 

  43. Liu M et al. Notable decrease of malignant pleural effusion after treatment with sorafenib in radioiodine-refractory follicular thyroid carcinoma. Thyroid. 2014;24(7):1179–83.

    Article  PubMed  Google Scholar 

  44. Akamatsu H et al. Multiplexed molecular profiling of lung cancer using pleural effusion. J Thorac Oncol. 2014;9(7):1048–52.

    Article  CAS  PubMed  Google Scholar 

  45. Zimmermann G et al. Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature. 2013;497(7451):638–42.

    Article  CAS  PubMed  Google Scholar 

  46. Ostrem JM et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yang L et al. CD163+ tumor-associated macrophage is a prognostic biomarker and is associated with therapeutic effect on malignant pleural effusion of lung cancer patients. Oncotarget. 2015;6(12):10592–603.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lin H et al. Interplay of Th1 and Th17 cells in murine models of malignant pleural effusion. Am J Respir Crit Care Med. 2014;189(6):697–706.

    Article  CAS  PubMed  Google Scholar 

  49. Yang G et al. Treg/Th17 imbalance in malignant pleural effusion partially predicts poor prognosis. Oncol Rep. 2015;33(1):478–84.

    CAS  PubMed  Google Scholar 

  50. Marazioti A, Blackwell TS, Stathopoulos GT. The lymphatic system in malignant pleural effusion. Drain or immune switch? Am J Respir Crit Care Med. 2014;189(6):626–7.

    Article  CAS  PubMed  Google Scholar 

  51. Chen CD, Wang CL, Yu CJ, Chien KY, Chen YT, Chen MC, et al. Targeted proteomics pipeline reveals potential biomarkers for the diagnosis of metastatic lung cancer in pleural effusion. J Proteome Res. 2014;13(6):2818–29.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios T. Stathopoulos.

Ethics declarations

Conflict of interest

Malamati Vreka, Laura V. Klotz, and Georgios T. Stathopoulos each declare no potential conflicts of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pleural Diseases and Mesothelioma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vreka, M., Klotz, L.V. & Stathopoulos, G.T. New insights on pleural fluid formation: potential translational targets. Curr Pulmonol Rep 5, 35–39 (2016). https://doi.org/10.1007/s13665-016-0135-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-016-0135-y

Keywords

Navigation