Skip to main content
Log in

The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals

(1959 Edward De Mille Campbell Memorial Lecture)

  • Classic Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. R.W. Buzzard, H.E. Cleaves, Hydrogen Embrittlement of Steel: Review of the Literature. United States, National Bureau of Standards, Circular 511 (1951)

  2. C.E. Sims, The Behavior of Gases in Solid Iron and Steel. Gases in Metals (American Society for Metals, Cleveland, 1953), pp. 119–198

    Google Scholar 

  3. D.P. Smith, Hydrogen in Metals (University of Chicago Press, Chicago, 1948)

    Google Scholar 

  4. C.A. Zapffe, C.E. Sims, Hydrogen embrittlement internal stress and defects in steel. Trans. Am. Inst. Min. Metall. Eng. 145, 225–259 (1941)

    Google Scholar 

  5. A.W. Dana, F.J. Shortsleeve, A.R. Troiano, Relation of flake formation in steel to hydrogen microstructure and stress. Trans. Am. Inst. Min. Metall. Eng. 203, 895–905 (1955), Journal of Metals, vol. 7

  6. R.P. Frohmberg, W.J. Barnett, A.R. Troiano, Delayed failure and hydrogen embrittlement in steel. Trans. Am. Soc. Metals 47, 892–925 (1955)

    Google Scholar 

  7. E.P. Klier, B.B. Muvdi, G. Sachs, Hydrogen embrittlement in an ultra-high-strength 4340 steel. Trans. Am. Inst. Min. Metall. Eng. 209, 106–112 (1957), Journal of Metals, vol. 9

  8. P. Bastien, P. Azou, Influence de l’amplitude et de la vitesse des deformations plastiques sur la segregation de la hydrogene dans le fer et les aciers. Comptes Rendues 232, 69–71 (1951)

    Google Scholar 

  9. N.J. Petch, P. Stables, Delayed fracture of metals under static load. Nature 169, 842–843 (1952)

    Article  Google Scholar 

  10. J.D. Hobson, J. Hewitt, The effect of hydrogen on the tensile properties of steel. J. Iron Steel Inst. 173, 131–140 (1953)

    Google Scholar 

  11. J.B. Seabrook, N.J. Grant, D. Carney, Hydrogen embrittlement of SAE 1020 steel. Trans. Am. Inst. Min. Metall. Eng. 188, 1317–1321 (1950), Journal of Metals, vol. 2. Discussion, Journal of Metals, vol. 3, 1951, 558–560

  12. J.T. Brown, W.M. Baldwin Jr., Hydrogen embrittlement of steels. Trans. Am. Inst. Min. Metall. Eng. 200, 298–304 (1954), Journal of Metals, vol. 6

  13. T. Toh, W.M. Baldwin Jr., Ductility of Steel with Varying Concentrations of Hydrogen. Stress, Corrosion, Cracking and Embrittlement (Wiley, New York, 1956)

    Google Scholar 

  14. H.H. Johnson, J.G. Morlet, A.R. Troiano, Hydrogen, crack initiation and delayed failure in steel. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng. 212, 526–536 (1958)

    Google Scholar 

  15. R.D. Daniels, R.J. Quigg, A.R. Troiano, Hydrogen embrittlement and delayed failure in titanium alloys. Trans. Am. Soc. Metals 51, 843–860 (1959)

    Google Scholar 

  16. A.R. Troiano, Delayed failure of high strength steels. Corros. Natl. Assoc. Corros. Eng. 15, 207–212t (1959)

    Google Scholar 

  17. H.H. Johnson, E.J. Schneider, A.R. Troiano, The recovery of embrittled cadmium plated steel. Iron Age 182, 47–50 (1958)

    Google Scholar 

  18. W.J. Barnett, A.R. Troiano, Crack propagation in the hydrogen-induced brittle fracture of steel. Trans. Am. Inst. Min. Metall. Eng. 209, 486–494 (1957), Journal of Metals, vol. 9

  19. H.H. Johnson, A.R. Troiano, Crack initiation in hydrogenated steel. Nature 179, 777 (1957)

    Article  Google Scholar 

  20. L.S. Darken, Diffusion of carbon in austenite with a discontinuity in composition. Trans. Am. Inst. Min. Metall. Eng. 180, 430–438 (1949)

    Google Scholar 

  21. E.A. Steigerwald, F.W. Schaller, A.R. Troiano, Discontinuous crack growth in hydrogenated steel. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng. 215, 1048–1052 (1959)

    Google Scholar 

  22. C. Zener, The Micro-Mechanism of Fracture, Fracturing of Metals (American Society for Metals, Cleveland, 1948), pp. 3–31

    Google Scholar 

  23. N.F. Mott, Fracture in metals. J. Iron Steel Inst. 183, 233–243 (1956)

    Google Scholar 

  24. A.N. Stroh, A theory of the fracture of metals. Adv. Phys. 6, 418–465 (1957)

    Article  Google Scholar 

  25. A.H. Cottrell, Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng. 212, 192–202 (1958)

    Google Scholar 

  26. Fracture, Proceeding of conference held April 1959, sponsored by National Academy of Science. MIT Press and John Wiley, 1959 Library of Congress Catalogue #59-14116

  27. A.E. Schuetz, W.D. Robertson, Hydrogen absorption, embrittlement and fracture of steel. Corrosion 13, 437–458 (1957)

    Article  Google Scholar 

  28. A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain aging of iron. Proc. Phys. Soc. Sec. A 62, 49–62 (1949)

    Article  Google Scholar 

  29. E.A. Steigerwald, F.W. Schaller, A.R. Troiano, The role of stress in hydrogen induced delayed failure. Submitted to Metallurgical Society of the American Institute of Mining and Metallurgical Engineers for publication

  30. D.N.G. Allen, S.R. Southwell, Relaxation methods applied to engineering problems, XIV. Plastic straining in two dimensional stress-systems. R. Soc. Lond. Ser. A Philos. Trans. 242, 379–414 (1949)

    Article  Google Scholar 

  31. J.A. Hendrickson, D.S. Wood, D.S. Clark, The initiation of brittle fracture in mild steel. Trans. Am. Soc. Metals 50, 656–676 (1958)

    Google Scholar 

  32. N. Makrides, W.M. Baldwin Jr. High temperature brittleness in titanium alloys. WADC Technical Report 57-251 (March, 1957)

  33. H.M. Burte, E.F. Erbin, G.T. Hahn, R.J. Kotfila, J.W. Seeger, D.A. Wruck, Hydrogen embrittlement of titanium alloys. Metal Prog. 67, 115–120 (1955)

    Google Scholar 

  34. E.J. Ripling, Hydrogen embrittlement in a commercial alpha–beta titanium alloy. Trans. Am. Inst. Min. Metall. Eng. 206, 502–503 (1956), Journal of Metals, vol. 8

  35. R.I. Jaffee, D.N. Williams, The effect of composition on the hydrogen embrittlement of alpha–beta titanium alloys. Trans. Am. Soc. Metals 51, 820–841 (1959)

    Google Scholar 

  36. D.N. Williams, F.R. Schwartzberg, R.I. Jaffee, The effects of microstructure and heat treatment on the hydrogen embrittlement of alpha–beta titanium alloys. Trans. Am. Soc. Metals 51, 802–819 (1959)

    Google Scholar 

  37. R.D. Daniels, R.J. Quigg, A.R. Troiano, Hydrogen embrittlement and delayed failure in titanium alloys. Trans. Am. Soc. Metals 51, 843–860 (1959)

    Google Scholar 

  38. R.J. Quigg, A.R. Troiano, Hydrogen embrittlement in steels, titanium alloys, and several face-centered cubic alloys. WADC Report 59-172 (April 1959) R. J. Quigg, Ph.D. Thesis, Case Institute of Technology, Cleveland

  39. R.D. Daniels, R.L. Harmon, A.R. Troiano, The influence of hydrogen on delayed failure in titanium alloys. Wright Air Development Center, WADC Technical Report 57-30 (February, 1957)

  40. B.W. Roberts, H.C. Rogers, Observations on mechanical properties of hydrogenated vanadium. Trans. Am. Inst. Min. Metall. Eng. 206, 1213–1215 (1956), Journal of Metals, vol. 8

  41. B.W. Roberts, G.W. Sears, P.D. Zemany, Hydrogen embrittlement of vanadium by catalytic decomposition of water with manganese. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng. 212, 71–72 (1958)

    Google Scholar 

  42. W. Rostoker, The Metallurgy of Vanadium (John Wiley and Sons, New York, 1958)

    Google Scholar 

  43. W.M. Baldwin Jr., The Metal Molybdenum, Discussion, p. 279

  44. E.S. Tankins, R. Maddin, Effect of grain size, strain rate and temperature on the yield point of columbium. Trans. Metall. Soc. Am. Inst. Min. Metall. Eng. 215 (1959) (to appear)

  45. A. Kramer, W.M. Baldwin Jr., Investigation of the fracture of metals. ONR Report, April 1958, NR-049/9-19-56

  46. J.H. Bechtold, Tensile properties of annealed tantalum at low temperatures. Acta Metall. 3, 249–254 (1955)

    Article  Google Scholar 

  47. P. Blanchard, A.R. Troiano, La Fragilisation des Métaux par L’hydrogene. Influence de la Structure Cristallographic et Electronique. Presented before Societé Francaise de Metallurgie, October 1959. To be published in Revue de Metallurgie

  48. E. Maurer, R. Mailander, Zur Frage der Blausprodigkeit. Stahl Eisen 45, 409–423 (1925)

    Google Scholar 

  49. H. Margolin, Yield point in polycrystalline titanium. Final Report, Watertown Arsenal Laboratory 1954, Contract DA-30-069-ORD-1217

  50. F.D. Rosi, F.C. Perkins, Mechanical properties and strain aging effects in titanium. Trans. Am. Soc. Metals 45, 972–992 (1953)

    Google Scholar 

  51. H.S. Gurev, W.M. Baldwin Jr. Research on strain aging effects in titanium. WADC Technical Report 59-223 (May, 1959)

  52. T.E. Scott, Research in Progress, Ph.D. Thesis. Case Institute of Technology, Cleveland

  53. F. Bastien, P. Azou, Effect of hydrogen on the deformation and fracture of iron and steel in simple tension, in Proceedings of the First World Metallurgical Congress, American Society for Metals (1951), pp. 535–552

  54. N.J. Petch, Lowering of the fracture stress due to surface adsorption. Philos. Mag. Ser. 8, 1, 331–335 (1956) also N. J. Petch, Delayed fracture of metals under static load. Nature 169, 842–843 (1952)

  55. F. de Kazinczy, A theory of hydrogen embrittlement. J. Iron Steel Inst. 177, 85–92 (1954)

    Google Scholar 

  56. C. Zapffe, Discussion of metal arc welding of steel, by S.A. Herres, Transactions, American Society for Metals 39, 191–192 (1947)

  57. J.G. Morlet, H.H. Johnson, A.R. Troiano, A new concept of hydrogen embrittlement in steel. J. Iron Steel Inst. 189, 37–41 (1958)

    Google Scholar 

  58. R.E. Norberg, Nuclear magnetic resonance of hydrogen into palladium wires. Phys. Rev. 86, 745 (1952)

    Article  Google Scholar 

  59. N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover Publication, New York, 1958)

    Google Scholar 

  60. R.H. Griffiths, J.D.F. Marsh, Contact Catalysis (Oxford University Press, London, 1957)

    Google Scholar 

  61. J. Chem. Phys. 63(4), 451–453 (1959)

  62. E.D. Campbell, Discussion to “Physical properties of heat-treated carbon steel”. J. H. Nead, Trans. Am. Inst. Min. Metall. Eng. 53, 235–237 (1915)

Download references

Authors

Additional information

Reprinted from Transactions of American Society for Metals, vol. 52, 54–80 (1960). Copyright 1960 by American Society for Metals, Metals Park, Ohio. At the time of the original printing, the author, Alexander R. Troiano was Chairman, Department of Metallurgical Engineering, Case Institute of Technology, Cleveland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troiano, A.R. The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals. Metallogr. Microstruct. Anal. 5, 557–569 (2016). https://doi.org/10.1007/s13632-016-0319-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0319-4

Navigation