Skip to main content

Advertisement

Log in

In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves

  • Research Article
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

To study the α-amylase and α-glucosidase enzymes inhibitory activity in vitro of ethanol (PLEE) and chloroform (PLCE) extracts of Polyalthia longifolia (Sonner.) Thw. leaves and in vivo antidiabetic activity against streptozotocin-induced type 1 diabetes mellitus in rats. In vitro studies were performed using α-amylase and α-glucosidase enzymes followed by enzyme kinetics using Lineweaver-Burk plot analysis. Acute toxicity studies were performed as per OECD guidelines 423. Streptozotocin (60 mg/kg b.w., i.p.) was used to induce type 1 diabetes mellitus in rats. Changes in body weight changes, blood glucose levels, serum marker enzymes, serum lipid profile, enzymatic and non-enzymatic antioxidants in liver homogenates were measured and histopathology of pancreatic tissues were done. The IC50 of PLEE for α-amylase was found to be 154.3 ± 2.42 μg/ml whereas PLCE was 180.3 ± 1.35 μg/ml. The IC50 values of the PLEE for α-glucosidase inhibition was found to be 208.7 ± 2.54 μg/ml and PLCE showed at 271.6 ± 0.85 μg/ml. Acute toxicity studies showed that the extracts were safe at 2000 mg/kg b.w. Both the extracts dose dependently reversed the abnormal changes observed in untreated diabetic rats. The effect produced by the ethanol extract was slightly higher than the chloroform extract. The results of this present study suggest that the ethanol and chloroform extracts of leaves of Polyalthia longifolia showed α-amylase and α-glucosidase enzymes inhibitory activity. The effect was further highlighted by the protection of the extracts against streptozotocin-induced type 1 diabetes mellitus in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Diabetes Association (2008) Diagnosis and classification of diabetes mellitus. Diabetes Care 31:S55–S60

    Article  Google Scholar 

  • Bachhawat AJ, Shihabudeen MS, Thirumurugan K (2011) Screening of fifteen Indian ayurvedic plants for alpha-glucosidase inhibitory activity and enzyme kinetics. Int J Pharm Pharmaceut Sci 3:267–274

    Google Scholar 

  • Baker H, Frank O, DeAngelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 1:531–536

    Google Scholar 

  • Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chang F, Shih Y, Hseih T, Chia Y, Tseng H et al (2000) Cytotoxic Constituents of Polyalthia longifolia var. pendula. J Nat Prod 63:1475–1478

    Article  PubMed  CAS  Google Scholar 

  • Chethan S, Sreerama YN, Malleshi NG (2008) Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem 111:187–191

    Article  CAS  Google Scholar 

  • Devasagayam TPA, Boloor KK, Ramasarma T (2003) Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophy 40:300–308

    CAS  Google Scholar 

  • Dey L, Attel AS, Yuan C (2002) Alternative therapies for type 2 diabetes. Altern Complement Ther 7:45–58

    Google Scholar 

  • Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 2:70–77

    Article  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh MS, Gurtu S (2012) Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. Int J App Res Nat Prod 4(4):37–41

    CAS  Google Scholar 

  • Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114(6):597–605

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Harris EH (2005) Elevated liver function tests in type 2 diabetes. Clin Diabetes 23(3):115–119

    Article  Google Scholar 

  • Howard BV (1987) Lipoprotein metabolism in diabetes mellitus. J Lipid Res 28:613–628

    PubMed  CAS  Google Scholar 

  • International Diabetes Federation (2011) IDF Diabetes Atlas, 5th edn. International Diabetes Federation, Brussels

    Google Scholar 

  • Jain AK, Jain A, Jain S, Sikarwar MS, Dubey SK (2006) Hepatoprotective activity of ethanolic extracts of leaves of Polyalthia longifolia. Plant Arch 6:841–842

    Google Scholar 

  • Jing M, Rayner CK, Jones KL, Horowitz Z (2009) Insulin secretion in healthy subjects and patients with Type 2 diabetes—role of the gastrointestinal tract. Best Pract Res Clin Endocrinol Metab 23:413–424

    Article  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 2:130–132

    Google Scholar 

  • Kritikar KR, Basu BD (1987) Indian medicinal plants, Vol I and II, 2nd edn. International book distributors, Dehradun

    Google Scholar 

  • Kumar KA, Umamaheswari M, Sivashanmugam AT, Subhadradevi V, Somanathan SS, Ravi TK (2009) Protective effect of Asystasia gangetica reduced oxidative damage in the small intestine of streptozotocin-induced diabetic rats. Orient Pharm Exp Med 9(4):307–314

    Article  Google Scholar 

  • Lobarzewski J, Ginalska J (1995) Industrial use of soluble or immobilized plant peroxidases. Plant Perox Newslett 6:3–7

    Google Scholar 

  • Lowry OH, Rosenbourgh NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maarel MJEC, Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • Malairajan P, Gopalakrishnan G, Narasimhan S, Veni KJK (2008) Evaluation of antiulcer activity of Polyalthia longifolia (Sonn) Thwaites in experimental animals. Indian J Pharmacol 40:126–128

    Article  PubMed  CAS  Google Scholar 

  • McAnuff MA, Omoruyi FO, Morrison EY, Asemota HN (2005) Changes in some liver enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides) or commercial diosgenin. West Indian Med J 54(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Moller N, Nair KS (2008) Diabetes and protein metabolism. Diabetes 57:3–4

    Article  PubMed  Google Scholar 

  • Nair R, Chanda S (2006a) Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J Pharmacol 38:142–144

    Article  Google Scholar 

  • Nair R, Chanda S (2006b) Evaluation of Polyalthia longifolia (Sonn.) Thw. leaf extract for antifungal activity. J Cell Tissue Res 6:581–584

    Google Scholar 

  • O’Brien RM, Granner DK (1991) Regulation of gene expression by insulin. Biochem J 278:609–619

    PubMed  Google Scholar 

  • OECD, Test No. 423: Acute Oral toxicity—Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4. OECD Publishing; (2002) doi:10.1787/9789264071001-en

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxides. J Lab Clin Med 70:158–159

    PubMed  CAS  Google Scholar 

  • Powers AC, D’Alessio (2011) Endocrine pancreas and pharmacotherapy of diabetes mellitus and hypoglycaemia. In: Brunton LL, Chabner BA, Knollmann BC (eds) Goodman and Gillman’s: The Pharmacological basis of therapeutics, 12th edn. McGrawHill Medical Publishing Division, New York, pp 1237–1274

    Google Scholar 

  • Pushparaj PN, Low HK, Manikandan J, Tan BK, Tan CH (2007) Antidiabetic effects of Cichorium intybus in streptozotocin-induceddiabetic rats. J Ethnopharmacol 111:430–434

    Article  PubMed  CAS  Google Scholar 

  • Racker E (1952) Enzymatic synthesis and breakdown of desoxyribose phosphate. J Biol Chem 196:347–365

    PubMed  CAS  Google Scholar 

  • Rajkumar L, Srinivasan N, Balasubramanian K, Govindarajulu P (1991) Increased degradation of dermal collagen in diabetic rats. Indian J Exp Biol 29:1081–1083

    PubMed  CAS  Google Scholar 

  • Rao TN, Kumarappan C, Thilagam E, Mohanalakshmi S, Subash MC (2008) Inhibition of carbohydrate digestive enzymes by Talinum portulacifolium (Forssk) leaf extract. J Complement Integr Med 5:1–10

    Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  • Sivashanmugam AT, Chatterjee TK (2011) In vitro evaluation of free radical scavenging activity of medicinal plant Polyalthia longifolia (Sonner.) Thw. leaf extract. J Pharm Res 4:3776–3780

    Google Scholar 

  • Sivashanmugam AT, Chatterjee TK (2012a) Anticataractogenesis activity of Polyalthia longifolia leaves extracts against glucose-induced cataractogenesis using goat lenses in vitro. European J Exp Biol 2:105–113

    Google Scholar 

  • Sivashanmugam AT, Chatterjee TK (2012b) Xanthine oxidase inhibitory activity and enzyme kinetics of Polyalthia longifolia (Sonner.) Thw. leaves using in vitro method. Int J Biol Pharm Res 3:61–65

    Google Scholar 

  • Smith BW, Adams LA (2011) Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol 7(8):456–465

    Article  PubMed  CAS  Google Scholar 

  • Subramanian R, Asmawi MZ, Sadikun A (2008) In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol 55:391–398

    PubMed  CAS  Google Scholar 

  • Sun F, Iwaguchi K, Shudo R, Nagaki Y, Tanaka K, Ikeda K et al (1999) Change in tissue concentrations of lipid hydroperoxides, vitamin C and vitamin E in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 96(2):185–190

    Article  CAS  Google Scholar 

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in β cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  • Wadkar KA, Magdum CS, Patil SS, Naikwade NS (2008) Antidiabetic potential and Indian medicinal plants. J Herb Med Toxicol 2:45–50

    Google Scholar 

  • Winkler R, Moser M (1992) Alterations of antioxidant tissue defense enzymes and related metabolic parameters in streptozotocin-diabetic rats–effects of iodine treatment. Wien Klin Wochenschr 104(14):409–413

    PubMed  CAS  Google Scholar 

  • Wu Y, Duh C (1990) Two new natural azafluorene alkaloids and a cytotoxic aporphine alkaloid from Polyalthia longifolia. J Nat Prod 53:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Yazdanparast R, Esmaeili MA, Helan JA (2005) Teucrium polium extract effects pancreatic function of streptozotocin diabetic rats: a histopathological examination. Iran Biomed J 9(2):81–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivashanmugam, A.T., Chatterjee, T.K. In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves. Orient Pharm Exp Med 13, 289–300 (2013). https://doi.org/10.1007/s13596-013-0118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-013-0118-2

Keywords

Navigation