Skip to main content

Advertisement

Log in

Wnt, notch signaling and exercise: what are their functions?

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In the last decade, the study of Wnt and Notch signaling in cell biology has led to significant progress in understanding embryogenesis, bone development, muscle healing, neurogenesis, and tumorigenesis. It has been found that regular physical activity can counteract the decline of skeletal muscle caused by aging, which is linked to osteoporosis, regenerative neurogenesis, hippocampal function, cognitive ability, and the creation of neuromuscular junctions. Despite these discoveries, there is still uncertainty about how cell biology and exercise can impact the Wnt and Notch signaling pathways in the locomotor system. This review aims to summarize the potential influence of exercise on Wnt and Notch signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep (Washington, DC: 1974). 1985;100(2):126–31.

    CAS  PubMed Central  Google Scholar 

  2. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    Article  PubMed  Google Scholar 

  3. Arem H, Moore SC, Patel A, Hartge P, de BerringtonGonzalez A, Visvanathan K, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose−response relationship. JAMA Intern Med. 2015;175(6):959–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bauman AE, Kamada M, Reis RS, Troiano RP, Ding D, Milton K, et al. An evidence-based assessment of the impact of the Olympic Games on population levels of physical activity. Lancet (London, England). 2021;398(10298):456–64.

    Article  PubMed  Google Scholar 

  5. Lieberman DE, Kistner TM, Richard D, Lee IM, Baggish AL. The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2107621118.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ferguson B. ACSM’s guidelines for exercise testing and prescription 9th Ed. 2014: J Can Chiropr Assoc. 2014;58(3):328.

    PubMed Central  Google Scholar 

  7. García-Pinillos F, Laredo-Aguilera JA, Muñoz-Jiménez M, Latorre-Román PA. Effects of 12-week concurrent high-intensity interval strength and endurance training program on physical performance in healthy older people. J Strength Cond Res. 2019;33(5):1445–52.

    Article  PubMed  Google Scholar 

  8. Lamberti N, Straudi S, Malagoni AM, Argirò M, Felisatti M, Nardini E, et al. Effects of low-intensity endurance and resistance training on mobility in chronic stroke survivors: a pilot randomized controlled study. Eur J Phys Rehabil Med. 2017;53(2):228–39.

    Article  PubMed  Google Scholar 

  9. Wehrle A, Kneis S, Dickhuth HH, Gollhofer A, Bertz H. Endurance and resistance training in patients with acute leukemia undergoing induction chemotherapy-a randomized pilot study. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer. 2019;27(3):1071–9.

    Article  PubMed  Google Scholar 

  10. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.

    Article  CAS  PubMed  Google Scholar 

  11. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? J Biol. 2005;4(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yamaguchi TP. Heads or tails: Wnts and anterior−posterior patterning. Current biology : CB. 2001;11(17):R713–24.

    Article  CAS  PubMed  Google Scholar 

  13. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  14. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science (New York, NY). 1999;284(5415):770–6.

    Article  ADS  CAS  Google Scholar 

  15. Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol. 2003;14(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  16. Greenwald I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 1998;12(12):1751–62.

    Article  CAS  PubMed  Google Scholar 

  17. Kadesch T. Notch signaling: a dance of proteins changing partners. Exp Cell Res. 2000;260(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kadesch T. Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev. 2004;14(5):506–12.

    Article  CAS  PubMed  Google Scholar 

  19. Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228(2):151–65.

    Article  CAS  PubMed  Google Scholar 

  20. Schweisguth F. Regulation of notch signaling activity. Current biology : CB. 2004;14(3):R129–38.

    Article  CAS  PubMed  Google Scholar 

  21. Ehebauer M, Hayward P, Arias AM. Notch, a universal arbiter of cell fate decisions. Science (New York, NY). 2006;314(5804):1414–5.

    Article  ADS  CAS  Google Scholar 

  22. Ehebauer M, Hayward P, Martinez-Arias A. Notch signaling pathway. Science's STKE : signal transduction knowledge environment. 2006;2006(364):cm7.

  23. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  24. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.

    Article  CAS  PubMed  Google Scholar 

  25. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  26. Perugorria MJ, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin JJG, et al. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16(2):121–36.

    Article  CAS  PubMed  Google Scholar 

  27. Skronska-Wasek W, Mutze K, Baarsma HA, Bracke KR, Alsafadi HN, Lehmann M, et al. Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2017;196(2):172–85.

    Article  CAS  PubMed  Google Scholar 

  28. Nusse R, Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017;169(6):985–99.

    Article  CAS  PubMed  Google Scholar 

  29. Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013;5(3): a015081.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reyes M, Flores T, Betancur D, Peña-Oyarzún D, Torres VA. Wnt/β-Catenin Signaling in Oral Carcinogenesis. Int J Mol Sci. 2020;21(13).

  31. Muñoz-Castañeda JR, Rodelo-Haad C, Pendon-Ruiz de Mier MV, Martin-Malo A, Santamaria R, Rodriguez M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins (Basel). 2020;12(3).

  32. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Binkley JM, Harris SR, Levangie PK, Pearl M, Guglielmino J, Kraus V, et al. Patient perspectives on breast cancer treatment side effects and the prospective surveillance model for physical rehabilitation for women with breast cancer. Cancer. 2012;118(8 Suppl):2207–16.

    Article  PubMed  Google Scholar 

  34. Fong DY, Ho JW, Hui BP, Lee AM, Macfarlane DJ, Leung SS, et al. Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ (Clinical research ed). 2012;344: e70.

    Article  PubMed  Google Scholar 

  35. Juvet LK, Thune I, Elvsaas I, Fors EA, Lundgren S, Bertheussen G, et al. The effect of exercise on fatigue and physical functioning in breast cancer patients during and after treatment and at 6 months follow-up: a meta-analysis. Breast (Edinburgh, Scotland). 2017;33:166–77.

    Article  CAS  PubMed  Google Scholar 

  36. Mijwel S, Jervaeus A, Bolam KA, Norrbom J, Bergh J, Rundqvist H, et al. High-intensity exercise during chemotherapy induces beneficial effects 12 months into breast cancer survivorship. J Cancer Surviv Res pract. 2019;13(2):244–56.

    Article  Google Scholar 

  37. Zeng Y, Huang M, Cheng AS, Zhou Y, So WK. Meta-analysis of the effects of exercise intervention on quality of life in breast cancer survivors. Breast cancer (Tokyo, Japan). 2014;21(3):262–74.

    Article  PubMed  Google Scholar 

  38. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ Can Medical Assoc J. 2006;175(1):34–41.

    Article  Google Scholar 

  39. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    Article  CAS  PubMed  Google Scholar 

  40. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science (New York, NY). 2004;303(5663):1483–7.

    Article  ADS  CAS  Google Scholar 

  42. Berschneider B, Königshoff M. WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. Int J Biochem Cell Biol. 2011;43(3):306–9.

    Article  CAS  PubMed  Google Scholar 

  43. Gurbuz I, Chiquet-Ehrismann R. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol. 2015;62:142–6.

    Article  CAS  PubMed  Google Scholar 

  44. Chiang KC, Yeh CN, Chung LC, Feng TH, Sun CC, Chen MF, et al. WNT-1 inducible signaling pathway protein-1 enhances growth and tumorigenesis in human breast cancer. Sci Rep. 2015;5:8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hörbelt T, Tacke C, Markova M, de Herzfeld Wiza D, Van de Velde F, Bekaert M, et al. The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes. Diabetologia. 2018;61(9):2054–65.

    Article  PubMed  Google Scholar 

  46. Murahovschi V, Pivovarova O, Ilkavets I, Dmitrieva RM, Döcke S, Keyhani-Nejad F, et al. WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes. 2015;64(3):856–66.

    Article  CAS  PubMed  Google Scholar 

  47. Tacke C, Aleksandrova K, Rehfeldt M, Murahovschi V, Markova M, Kemper M, et al. Assessment of circulating Wnt1 inducible signalling pathway protein 1 (WISP-1)/CCN4 as a novel biomarker of obesity. J Cell Commun Signal. 2018;12(3):539–48.

    Article  PubMed  Google Scholar 

  48. Carmichael AR. Obesity and prognosis of breast cancer. Obesity Rev. 2006;7(4):333–40.

    Article  CAS  Google Scholar 

  49. Cust AE, Stocks T, Lukanova A, Lundin E, Hallmans G, Kaaks R, et al. The influence of overweight and insulin resistance on breast cancer risk and tumour stage at diagnosis: a prospective study. Breast Cancer Res Treat. 2009;113(3):567–76.

    Article  CAS  PubMed  Google Scholar 

  50. Mendonça FM, de Sousa FR, Barbosa AL, Martins SC, Araújo RL, Soares R, et al. Metabolic syndrome and risk of cancer: which link? Metabolism. 2015;64(2):182–9.

    Article  PubMed  Google Scholar 

  51. Chang JS, Kim TH, Kong ID. Exercise intervention lowers aberrant serum WISP-1 levels with insulin resistance in breast cancer survivors: a randomized controlled trial. Sci Rep. 2020;10(1):10898.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen D, Zhang Y, Zhang M, Chang J, Zeng Z, Kou X, et al. Exercise attenuates brain aging by rescuing down-regulated Wnt/β-catenin signaling in aged rats. Front Aging Neurosci. 2020;12:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bayod S, Mennella I, Sanchez-Roige S, Lalanza JF, Escorihuela RM, Camins A, et al. Wnt pathway regulation by long-term moderate exercise in rat hippocampus. Brain Res. 2014;1543:38–48.

    Article  CAS  PubMed  Google Scholar 

  54. Bashiri J, NourAzar A, Purrazi H. Effect of three months aerobic training on Wnt-signaling pathway in skeletal muscle of male rats. Razi J Med Sci. 2017;24(160):7–16.

    Google Scholar 

  55. Gardinier JD, Daly-Seiler C, Rostami N, Kundal S, Zhang C. Loss of the PTH/PTHrP receptor along the osteoblast lineage limits the anabolic response to exercise. PLoS ONE. 2019;14(1): e0211076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Iura A, McNerny EG, Zhang Y, Kamiya N, Tantillo M, Lynch M, et al. Mechanical loading synergistically increases trabecular bone volume and improves mechanical properties in the mouse when BMP signaling is specifically ablated in osteoblasts. PLoS ONE. 2015;10(10): e0141345.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Herbst E, Gale T, Nagai K, Tashiro Y, Irrgang JJ, Anderst W, et al. Posterior tibial subchondral bone and meniscal slope correlate with in vivo internal tibial rotation. Orthop J Sports Med. 2017;5(7_suppl6):2325967117S00307.

    Article  PubMed Central  Google Scholar 

  58. Akpinar B, Thorhauer E, Tashman S, Irrgang JJ, Fu FH, Anderst WJ. Tibiofemoral cartilage contact differences between level walking and downhill running. Orthop J Sports Med. 2019;7(4):2325967119836164.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bello M, Sousa MC, Neto G, Oliveira L, Guerras I, Mendes R, et al. The effect of a long-term, community-based exercise program on bone mineral density in postmenopausal women with pre-diabetes and type 2 diabetes. J Hum Kinet. 2014;43:43–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gushiken M, Komiya I, Ueda S, Kobayashi J. Heel bone strength is related to lifestyle factors in Okinawan men with type 2 diabetes mellitus. J Diabetes Investig. 2015;6(2):150–7.

    Article  PubMed  Google Scholar 

  61. Chen X, Yang K, Sun P, Zhao R, Liu B, Lu P. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol Metab Syndr. 2021;13(1):116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kumar A, Kaur H, Singh A. Neuropathic pain models caused by damage to central or peripheral nervous system. Pharmacol Rep PR. 2018;70(2):206–16.

    Article  PubMed  Google Scholar 

  63. Mukai M, Uchida K, Hirosawa N, Murakami K, Kuniyoshi K, Inoue G, et al. Wrapping with basic fibroblast growth factor-impregnated collagen sheet reduces rat sciatic nerve allodynia. J Orthop Res. 2019;37(10):2258–63.

    Article  CAS  PubMed  Google Scholar 

  64. Bernetti A, Agostini F, de Sire A, Mangone M, Tognolo L, Di Cesare A, et al. Neuropathic pain and rehabilitation: a systematic review of international guidelines. Diagnostics (Basel, Switzerland). 2021;11(1):74.

    PubMed  PubMed Central  Google Scholar 

  65. Finnerup NB, Kuner R, Jensen TS. Neuropathic pain: from mechanisms to treatment. Physiol Rev. 2021;101(1):259–301.

    Article  CAS  PubMed  Google Scholar 

  66. Itokazu T, Hayano Y, Takahashi R, Yamashita T. Involvement of Wnt/β-catenin signaling in the development of neuropathic pain. Neurosci Res. 2014;79:34–40.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao Y, Yang Z. Effect of Wnt signaling pathway on pathogenesis and intervention of neuropathic pain. Exp Ther Med. 2018;16(4):3082–8.

    PubMed  PubMed Central  Google Scholar 

  68. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cho YH, Kim JE, Seo TB. Effect of treadmill exercise on pain-related Wnt/β-catenin signaling pathway in dorsal root ganglion neurons at the early phase regeneration of the injured sciatic nerve. J Exerc Rehabil. 2021;17(2):96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Morgan TH. The theory of the gene. Am Nat. 1917;51(609):513–44.

    Article  Google Scholar 

  71. Kidd S, Kelley MR, Young MW. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol. 1986;6(9):3094–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985;43(3 Pt 2):567–81.

    Article  CAS  PubMed  Google Scholar 

  73. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell. 1997;90(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  74. Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 2003;3(10):756–67.

    Article  CAS  PubMed  Google Scholar 

  75. Okajima T, Irvine KD. Regulation of notch signaling by o-linked fucose. Cell. 2002;111(6):893–904.

    Article  CAS  PubMed  Google Scholar 

  76. Okajima T, Xu A, Irvine KD. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem. 2003;278(43):42340–5.

    Article  CAS  PubMed  Google Scholar 

  77. Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell. 1991;67(4):687–99.

    Article  CAS  PubMed  Google Scholar 

  78. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406(6794):369–75.

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Brückner K, Perez L, Clausen H, Cohen S. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature. 2000;406(6794):411–5.

    Article  ADS  PubMed  Google Scholar 

  80. Haines N, Irvine KD. Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 2003;4(10):786–97.

    Article  CAS  PubMed  Google Scholar 

  81. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell. 2006;124(5):973–83.

    Article  CAS  PubMed  Google Scholar 

  82. Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol. 2004;5(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  83. Wilson JJ, Kovall RA. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell. 2006;124(5):985–96.

    Article  CAS  PubMed  Google Scholar 

  84. Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD, et al. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem. 2006;281(8):5106–19.

    Article  CAS  PubMed  Google Scholar 

  85. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  86. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, et al. Nicastrin functions as a gamma-secretase-substrate receptor. Cell. 2005;122(3):435–47.

    Article  CAS  PubMed  Google Scholar 

  87. Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 1998;12(15):2269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL, et al. A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell. 2011;42(5):689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nagel AC, Krejci A, Tenin G, Bravo-Patiño A, Bray S, Maier D, et al. Hairless-mediated repression of notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol. 2005;25(23):10433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, et al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell. 2012;48(3):445–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamidi H, Gustafason D, Pellegrini M, Gasson J. Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis. PLoS ONE. 2011;6(5): e20022.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med. 2012;18(2):298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103(48):18261–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20(15):2096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pitsouli C, Delidakis C. The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development (Cambridge, England). 2005;132(18):4041–50.

    Article  CAS  PubMed  Google Scholar 

  96. Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, et al. Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 2001;276(37):34371–8.

    Article  CAS  PubMed  Google Scholar 

  97. Gupta-Rossi N, Six E, LeBail O, Logeat F, Chastagner P, Olry A, et al. Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor. J Cell Biol. 2004;166(1):73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem. 2001;276(38):35847–53.

    Article  CAS  PubMed  Google Scholar 

  99. Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 2001;21(21):7403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nakayama KI, Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006;6(5):369–81.

    Article  CAS  PubMed  Google Scholar 

  101. Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 2005;8(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  102. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004;101(24):9085–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, et al. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 2003;12(2):381–92.

    Article  CAS  PubMed  Google Scholar 

  104. Kemp Z, Rowan A, Chambers W, Wortham N, Halford S, Sieber O, et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Can Res. 2005;65(24):11361–6.

    Article  CAS  Google Scholar 

  105. Kwak EL, Moberg KH, Wahrer DC, Quinn JE, Gilmore PM, Graham CA, et al. Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecol Oncol. 2005;98(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  106. Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature. 2001;413(6853):316–22.

    Article  ADS  CAS  PubMed  Google Scholar 

  107. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204(8):1825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, et al. Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase. J Biol Chem. 2004;279(48):50110–9.

    Article  CAS  PubMed  Google Scholar 

  110. Fryer CJ, White JB, Jones KA. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell. 2004;16(4):509–20.

    Article  CAS  PubMed  Google Scholar 

  111. Mo JS, Kim MY, Han SO, Kim IS, Ann EJ, Lee KS, et al. Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol Cell Biol. 2007;27(15):5565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Saint Just Ribeiro M, Hansson ML, Lindberg MJ, Popko-Scibor AE, Wallberg AE. GSK3beta is a negative regulator of the transcriptional coactivator MAML1. Nucl Acids Res. 2009;37(20):6691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123(16):2451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, et al. Satellite cell depletion disrupts transcriptional coordination and muscle adaptation to exercise. Function (Oxford, England). 2021;2(1):033.

    Google Scholar 

  115. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11 Suppl):S52-69.

    Article  PubMed  Google Scholar 

  117. Darr KC, Schultz E. Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol (Bethesda, Md: 1985). 1987;63(5):1816–21.

    Article  CAS  Google Scholar 

  118. Zhong W, Jiang MM, Weinmaster G, Jan LY, Jan YN. Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development (Cambridge, England). 1997;124(10):1887–97.

    Article  CAS  PubMed  Google Scholar 

  119. Bubak MP, Stout K, Tomtschik J, Peterson E, Cardozo CP, Graham ZA, et al. Notch, Numb and Numb-like responses to exercise-induced muscle damage in human skeletal muscle. Exp Physiol. 2022;107(8):800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brandt MD, Maass A, Kempermann G, Storch A. Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci. 2010;32(8):1256–64.

    Article  PubMed  Google Scholar 

  121. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA. 2001;98(16):9306–11.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Welle S, Burgess K, Mehta S. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab. 2009;296(3):E567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WM, Ma H, Pierre P, et al. Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins. Am J Physiol Endocrinol Metab. 2013;304(1):E41-50.

    Article  CAS  PubMed  Google Scholar 

  125. Sutrave P, Kelly AM, Hughes SH. ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 1990;4(9):1462–72.

    Article  CAS  PubMed  Google Scholar 

  126. Sutrave P, Leferovich JM, Kelly AM, Hughes SH. The induction of skeletal muscle hypertrophy by a ski transgene is promoter-dependent. Gene. 2000;241(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  127. Hulmi JJ, Ahtiainen JP, Kaasalainen T, Pöllänen E, Häkkinen K, Alen M, et al. Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc. 2007;39(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  128. Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol (Bethesda, Md: 1985). 2007;103(5):1744–51.

    Article  CAS  Google Scholar 

  129. Kim JS, Petrella JK, Cross JM, Bamman MM. Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol. 2007;103(5):1488–95.

    Article  CAS  PubMed  Google Scholar 

  130. Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999;276(1):C120–7.

    Article  CAS  PubMed  Google Scholar 

  131. Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, et al. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol. 2008;102(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  132. Dalbo VJ, Roberts MD, Sunderland KL, Poole CN, Stout JR, Beck TW, et al. Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise. J Gerontol A Biol Sci Med Sci. 2011;66(8):855–65.

    Article  PubMed  Google Scholar 

  133. Marshall A, Salerno MS, Thomas M, Davies T, Berry C, Dyer K, et al. Mighty is a novel promyogenic factor in skeletal myogenesis. Exp Cell Res. 2008;314(5):1013–29.

    Article  CAS  PubMed  Google Scholar 

  134. Salerno MS, Dyer K, Bracegirdle J, Platt L, Thomas M, Siriett V, et al. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis. Exp Cell Res. 2009;315(12):2012–21.

    Article  CAS  PubMed  Google Scholar 

  135. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science (New York, NY). 2003;302(5650):1575–7.

    Article  ADS  CAS  Google Scholar 

  136. Carlson ME, Hsu M, Conboy IM. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature. 2008;454(7203):528–32.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Akiho M, Nakashima H, Sakata M, Yamasa Y, Yamaguchi A, Sakuma K. Expression profile of Notch-1 in mechanically overloaded plantaris muscle of mice. Life Sci. 2010;86(1–2):59–65.

    Article  CAS  PubMed  Google Scholar 

  138. Davis E, Jensen CH, Schroder HD, Farnir F, Shay-Hadfield T, Kliem A, et al. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Current biology : CB. 2004;14(20):1858–62.

    Article  CAS  PubMed  Google Scholar 

  139. Guo S, Liu M, Gonzalez-Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochem Biophys Acta. 2011;1815(2):197–213.

    CAS  PubMed  Google Scholar 

  140. Chu J, Jeffries S, Norton JE, Capobianco AJ, Bresnick EH. Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain. J Biol Chem. 2002;277(9):7587–97.

    Article  CAS  PubMed  Google Scholar 

  141. MacKenzie MG, Hamilton DL, Pepin M, Patton A, Baar K. Inhibition of myostatin signaling through Notch activation following acute resistance exercise. PLoS ONE. 2013;8(7): e68743.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research Fund Project of Hebei Provincial Health Commission. Project title: A Study on the Promotion of Health for University Teachers through Exercise Prescription Management in the Context of Body-Medicine Integration. Approval number: 20231552.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangjun Wang or Mohammadamin Morshedi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, G., Wei, Z. et al. Wnt, notch signaling and exercise: what are their functions?. Human Cell (2024). https://doi.org/10.1007/s13577-024-01036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13577-024-01036-3

Keywords

Navigation