Skip to main content

Advertisement

Log in

Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

ALP:

Alkaline phosphatase

AMPK:

Adenosine monophosphate-activated protein kinase

BBR:

Berberine

BMMSCs:

Bone marrow mesenchymal stem cells

BMP10:

Bone morphogenetic protein 10

CM:

Conditioned medium

COL-1:

Collagen I

DFSCs:

Dental follicle stem cells

DMP1:

Dentin matrix acidic phosphoprotein 1

DPSCs:

Dental pulp stem cells

DSCs:

Dental stem cells

DSPP:

Dentin sialophosphoprotein

FGF9:

Fibroblast growth factor 9

GMSCs:

Gingival mesenchymal stem cells

IL-10:

Anti-inflammatory cytokine interleukin 10

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MSCs:

Mesenchymal stem cells

OCN:

Osteocalcin

OPN:

Osteopontin

PDLSCs:

Periodontal ligament stem cells

PEG-ASA:

Tetra-PEG hydrogels loaded with aspirin

PI3K/Akt:

Phosphoinositide 3-kinase-protein kinase B

PRF:

Platelet-rich fibrin

RUNX2:

Runt-related transcription factor 2

SCAPs:

Stem cells from apical papilla

SHED:

Stem cells from human exfoliated deciduous teeth

TCM:

Traditional Chinese medicine

TERT/Wnt/β-catenin:

Telomerase reverse transcriptase/wingless/integrated/β-catenin

TNF-α:

Tumor necrosis factor α

VEGFA:

Vascular endothelial growth factor A

References

  1. Renvert S, Lindahl C, Roos Jansåker AM, Persson GR. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol. 2011;38(1):65–73.

    PubMed  Google Scholar 

  2. Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13:3311–27.

    CAS  Google Scholar 

  3. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25):13625–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13(2):152–9.

    PubMed  Google Scholar 

  5. Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol (Baltimore, Md, 1950). 2009;183(12):7787–98.

    CAS  Google Scholar 

  6. Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int. 2020;2020:8864572.

    PubMed  PubMed Central  Google Scholar 

  7. Shoushrah SH, Transfeld JL, Tonk CH, et al. Sinking our teeth in getting dental stem cells to clinics for bone regeneration. Int J Mol Sci. 2021;22(12):1.

  8. Wu DT, Munguia-Lopez JG, Cho YW, et al. Polymeric scaffolds for dental, oral, and craniofacial regenerative medicine. Mol J Synth Chem Nat Product Chem. 2021;26(22):1.

  9. Lu B, Atala A. Small molecules and small molecule drugs in regenerative medicine. Drug Discovery Today. 2014;19(6):801–8.

    CAS  PubMed  Google Scholar 

  10. Sui B, Wu D, Xiang L, Fu Y, Kou X, Shi S. Dental pulp stem cells: from discovery to clinical application. J Endodont. 2020;46(9S):S46–55.

    Google Scholar 

  11. Wei X, Ling J, Wu L, Liu L, Xiao Y. Expression of mineralization markers in dental pulp cells. J Endodont. 2007;33(6):703–8.

    Google Scholar 

  12. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 2018;18(2):187–96.

    PubMed  Google Scholar 

  13. Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12(5):511–23.

    CAS  PubMed  Google Scholar 

  14. Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative potential of DPSCs and revascularization: direct, paracrine or autocrine effect. Stem Cell Rev Rep. 2021;17(5):1635–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu XY, Li X, Wang J, He XT, Sun HH, Chen FM. Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Transl Med. 2019;8(4):392–403.

    PubMed  Google Scholar 

  16. Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells: regenerative potency in periodontium. Stem Cells Dev. 2019;28(15):974–85.

    PubMed  Google Scholar 

  17. Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S. Aspirin enhances osteogenic potential of periodontal ligament stem cells (PDLSCs) and modulates the expression profile of growth factor-associated genes in PDLSCs. J Periodontol. 2016;87(7):837–47.

  18. Trubiani O, Pizzicannella J, Caputi S, et al. Periodontal ligament stem cells: current knowledge and future perspectives. Stem Cells Develop. 2019;28(15):995–1003.

    Google Scholar 

  19. Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Theranostics. 2019;9(9):2694–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ko CS, Chen JH, Su WT. Stem cells from human exfoliated deciduous teeth: a concise review. Curr Stem Cell Res Ther. 2020;15(1):61–76.

    CAS  PubMed  Google Scholar 

  21. Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455):1.

  22. Novais A, Lesieur J, Sadoine J, et al. Priming dental pulp stem cells from human exfoliated deciduous teeth with fibroblast growth factor-2 enhances mineralization within tissue-engineered constructs implanted in craniofacial bone defects. Stem Cells Transl Med. 2019;8(8):844–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang J, Fan W, Deng Q, He H, Huang F. Stem cells from the apical papilla: a promising source for stem cell-based therapy. Biomed Res Int. 2019;2019:6104738.

    PubMed  PubMed Central  Google Scholar 

  24. Abe S, Hamada K, Miura M, Yamaguchi S. Neural crest stem cell property of apical pulp cells derived from human developing tooth. Cell Biol Int. 2012;36(10):927–36.

    PubMed  Google Scholar 

  25. Siismets EM, Hatch NE. Cranial neural crest cells and their role in the pathogenesis of craniofacial anomalies and coronal craniosynostosis. J Develop Biol. 2020;8(3):1.

  26. Zalc A, Sinha R, Gulati GS, et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science. 2021;371(6529):1.

  27. Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol. 2018;6:103.

    PubMed  PubMed Central  Google Scholar 

  28. Bi R, Lyu P, Song Y, et al. Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: from mechanisms to applications. Biomolecules. 2021;11(7):1.

  29. Morsczeck C. Mechanisms during osteogenic differentiation in human dental follicle cells. Int J Mol Sci. 2022;23(11):1.

  30. Angiero F, Rossi C, Ferri A, et al. Stromal phenotype of dental follicle stem cells. Front Biosci (Elite Ed). 2012;4(3):1009–14.

    PubMed  Google Scholar 

  31. Zhang J, Ding H, Liu X, Sheng Y, Liu X, Jiang C. Dental follicle stem cells: tissue engineering and immunomodulation. Stem Cells Develop. 2019;28(15):986–94.

    Google Scholar 

  32. Zhou T, Pan J, Wu P, et al. Dental follicle cells: roles in development and beyond. Stem Cells Int. 2019;2019:9159605.

    PubMed  PubMed Central  Google Scholar 

  33. Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res. 2012;91(11):1011–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells. 2010;28(10):1856–68.

    CAS  PubMed  Google Scholar 

  35. Kim D, Lee AE, Xu Q, Zhang Q, Le AD. Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine—a comprehensive review. Front Immunol. 2021;12:667221.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaspoz JM, Coxson PG, Goldman PA, et al. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease. N Engl J Med. 2002;346(23):1800–6.

    PubMed  Google Scholar 

  37. Langley RE, Burdett S, Tierney JF, Cafferty F, Parmar MK, Venning G. Aspirin and cancer: has aspirin been overlooked as an adjuvant therapy. Br J Cancer. 2011;105(8):1107–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Atallah A, Lecarpentier E, Goffinet F, Doret-Dion M, Gaucherand P, Tsatsaris V. Aspirin for prevention of preeclampsia. Drugs. 2017;77(17):1819–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, He G, Tang H, et al. Aspirin promotes tenogenic differentiation of tendon stem cells and facilitates tendinopathy healing through regulating the GDF7/Smad1/5 signaling pathway. J Cell Physiol. 2020;235(5):4778–89.

    CAS  PubMed  Google Scholar 

  40. Han Y, Zhang F, Zhang J, et al. "Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces. 2019;179:1–8.

    CAS  PubMed  Google Scholar 

  41. Yuan M, Zhan Y, Hu W, et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells. Int J Mol Med. 2018;42(4):1967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, Memar MY, Maleki Dizaj S, Sharifi S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep. 2020;10(1):18200.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan W, Yang F, Liu Z, et al. Anti-inflammatory and mineralization effects of an ASP/PLGA-ASP/ACP/PLLA-PLGA composite membrane as a dental pulp capping agent. J Funct Biomater. 2022;13(3):1.

  44. Abd Rahman F. Gene expression profiling on effect of aspirin on osteogenic differentiation of periodontal ligament stem cells. BDJ Open. 2021;7(1):35.

  45. Li B, Sun J, Dong Z, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 2016;6:26542.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bliden KP, Patrick J, Pennell AT, Tantry US, Gurbel PA. Drug delivery and therapeutic impact of extended-release acetylsalicylic acid. Fut Cardiol. 2016;12(1):45–58.

    CAS  Google Scholar 

  47. Zhang Y, Ding N, Zhang T, Sun Q, Han B, Yu T. A tetra-PEG hydrogel based aspirin sustained release system exerts beneficial effects on periodontal ligament stem cells mediated bone regeneration. Front Chem. 2019;7:682.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Dou X, Zhang L, et al. Facile fabrication of a biocompatible composite gel with sustained release of aspirin for bone regeneration. Bioactive Mater. 2022;11:130–9.

    CAS  Google Scholar 

  49. Du J, Mei S, Guo L, et al. Platelet-rich fibrin/aspirin complex promotes alveolar bone regeneration in periodontal defect in rats. J Periodontal Res. 2018;53(1):47–56.

    CAS  PubMed  Google Scholar 

  50. Liu Y, Chen C, Liu S, et al. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED. J Dent Res. 2015;94(1):209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tanaka Y, Sonoda S, Yamaza H, et al. Acetylsalicylic acid treatment and suppressive regulation of AKT accelerate odontogenic differentiation of stem cells from the apical papilla. J Endodont. 2019;45(5):591-598.e6.

    Google Scholar 

  52. Yang R, Yu T, Liu D, Shi S, Zhou Y. Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Res Ther. 2018;9(1):62.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu T, Yan B, Li J, et al. Acetylsalicylic acid rescues the immunomodulation of inflamed gingiva-derived mesenchymal stem cells via upregulating FasL in mice. Stem Cell Res Ther. 2019;10(1):368.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen C, Akiyama K, Yamaza T, et al. Telomerase governs immunomodulatory properties of mesenchymal stem cells by regulating FAS ligand expression. EMBO Mol Med. 2014;6(3):322–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Paganelli A, Trubiani O, Diomede F, Pisciotta A, Paganelli R. Immunomodulating profile of dental mesenchymal stromal cells: a comprehensive overview. Front Oral Health. 2021. https://doi.org/10.3389/froh.2021.635055

  56. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–93.

    CAS  PubMed  Google Scholar 

  57. Flory J, Lipska K. Metformin in 2019. JAMA. 2019;321(19):1926–7.

    PubMed  PubMed Central  Google Scholar 

  58. Lv Z, Guo Y. Metformin and its benefits for various diseases. Front Endocrinol. 2020;11:191.

    Google Scholar 

  59. Gao Y, Xue J, Li X, Jia Y, Hu J. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol. 2008;60(12):1695–700.

    CAS  PubMed  Google Scholar 

  60. Ahn MJ, Cho GW. Metformin promotes neuronal differentiation and neurite outgrowth through AMPK activation in human bone marrow-mesenchymal stem cells. Biotechnol Appl Biochem. 2017;64(6):836–42.

    CAS  PubMed  Google Scholar 

  61. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88(9):792–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Qin W, Gao X, Ma T, et al. Metformin enhances the differentiation of dental pulp cells into odontoblasts by activating AMPK signaling. J Endodont. 2018;44(4):576–84.

    Google Scholar 

  63. He L. Metformin and systemic metabolism. Trends Pharmacol Sci. 2020;41(11):868–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Boreak N, Khayrat N, Shami AO, et al. Metformin pre-conditioning enhances the angiogenic ability of the secretome of dental pulp stem cells. Saudi Pharm J SPJ off Publ Saudi Pharm Soc. 2021;29(8):908–13.

    CAS  Google Scholar 

  65. Zhang S, Zhang R, Qiao P, et al. Metformin-induced MicroRNA-34a-3p downregulation alleviates senescence in human dental pulp stem cells by targeting CAB39 through the AMPK/mTOR signaling pathway. Stem Cells Int. 2021;2021:6616240.

    PubMed  PubMed Central  Google Scholar 

  66. Wechsler ME, Rao VV, Borelli AN, Anseth KS. Engineering the MSC secretome: a hydrogel focused approach. Adv Healthcare Mater. 2021;10(7):e2001948.

    Google Scholar 

  67. Wook-Huh H, Na YG, Kang H, et al. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int J Pharm. 2021;592:120113.

    PubMed  Google Scholar 

  68. Qin W, Chen JY, Guo J, et al. Novel calcium phosphate cement with metformin-loaded chitosan for odontogenic differentiation of human dental pulp cells. Stem Cells Int. 2018;2018:7173481.

    PubMed  PubMed Central  Google Scholar 

  69. Wang S, Xia Y, Ma T, et al. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res. 2019;9(1):85–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Houshmand B, Tabibzadeh Z, Motamedian SR, Kouhestani F. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes. Arch Oral Biol. 2018;95:44–50.

    CAS  PubMed  Google Scholar 

  71. Bhandi S, Alkahtani A, Mashyakhy M, et al. Study of optimal conditions for growth and osteogenic differentiation of dental pulp stem cells based on glucose and serum content. Saudi J Biol Sci. 2021;28(11):6359–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao X, Qin W, Chen L, et al. Effects of targeted delivery of metformin and dental pulp stem cells on osteogenesis via demineralized dentin matrix under high glucose conditions. ACS Biomater Sci Eng. 2020;6(4):2346–56.

    CAS  PubMed  Google Scholar 

  73. Zhang YL, Liu F, Li ZB, et al. Metformin combats high glucose-induced damage to the osteogenic differentiation of human periodontal ligament stem cells via inhibition of the NPR3-mediated MAPK pathway. Stem Cell Res Ther. 2022;13(1):305.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang R, Liang Q, Kang W, Ge S. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro. Cell Biol Int. 2019;1:1.

  75. Jia L, Xiong Y, Zhang W, Ma X, Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res. 2020;386(2):111717.

    CAS  PubMed  Google Scholar 

  76. Zhao X, Pathak JL, Huang W, et al. Metformin enhances osteogenic differentiation of stem cells from human exfoliated deciduous teeth through AMPK pathway. J Tissue Eng Regen Med. 2020;14(12):1869–79.

    CAS  PubMed  Google Scholar 

  77. Deng S, Lei T, Chen H, et al. Metformin pre-treatment of stem cells from human exfoliated deciduous teeth promotes migration and angiogenesis of human umbilical vein endothelial cells for tissue engineering. Cytotherapy. 2022;24(11):1095–104.

    CAS  PubMed  Google Scholar 

  78. Qu L, Dubey N, Ribeiro JS, et al. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J Mech Behav Biomed Mater. 2021;116:104293.

    CAS  PubMed  Google Scholar 

  79. Cai S, Lei T, Bi W, et al. Chitosan hydrogel supplemented with metformin promotes neuron-like cell differentiation of gingival mesenchymal stem cells. Int J Mol Sci. 2022;23(6):1.

  80. Och A, Podgórski R, Nowak R. Biological activity of berberine—a summary update. Toxins. 2020;12(11):1.

  81. Song D, Hao J, Fan D. Biological properties and clinical applications of berberine. Front Med. 2020;14(5):564–82.

    PubMed  Google Scholar 

  82. Wang J, Wong YK, Liao F. What has traditional Chinese medicine delivered for modern medicine. Expert Rev Mol Med. 2018;20: e4.

    PubMed  Google Scholar 

  83. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): a clinical review. Phytother Res PTR. 2019;33(3):504–23.

    PubMed  Google Scholar 

  84. Li W, Liu Y, Wang B, et al. Protective effect of berberine against oxidative stress-induced apoptosis in rat bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2016;12(6):4041–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu A, Bao Y, Yu H, Zhou Y, Lu Q. Berberine accelerates odontoblast differentiation by Wnt/β-catenin activation. Cell Reprogram. 2019;21(2):108–14.

    CAS  PubMed  Google Scholar 

  86. Xin BC, Wu QS, Jin S, Luo AH, Sun DG, Wang F. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res POR. 2020;26(3):1677–85.

    PubMed  Google Scholar 

  87. Ma L, Yu Y, Liu H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep. 2021;11(1):1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu J, Zhao X, Pei D, et al. The promotion function of Berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR. Sci Rep. 2018;8(1):2848.

    PubMed  PubMed Central  Google Scholar 

  89. Zhang LN, Wang XX, Wang Z, Li KY, Xu BH, Zhang J. Berberine improves advanced glycation end products-induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β-catenin pathway. Mol Med Rep. 2019;19(6):5440–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cui Y, Xie J, Fu Y, et al. Berberine mediates root remodeling in an immature tooth with apical periodontitis by regulating stem cells from apical papilla differentiation. Int J Oral Sci. 2020;12(1):18.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liang C, Liao L, Tian W. Stem cell-based dental pulp regeneration: insights from signaling pathways. Stem Cell Rev Rep. 2021;17(4):1251–63.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Shandong Province (No. ZR2021MH051 to Gang Ding), the National Natural Science Foundation of China (No. 81570945 to Gang Ding), the Postgraduate Education Quality Improvement Plan of Shandong Province (No. SDYAL21150 to Gang Ding), and 2021 Youth Innovation Talent Introduction and Education Program of Shandong Province Universities (The innovative team for molecular epidemiology of oral cancer based on multiomics).

Author information

Authors and Affiliations

Authors

Contributions

ZZ designed the study, searched literature, analyzed data, and wrote the article. ST, TY, and XW searched literature and analyzed data. GD designed the study, wrote the article, and supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gang Ding.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Tang, S., Yang, T. et al. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine. Human Cell 36, 1620–1637 (2023). https://doi.org/10.1007/s13577-023-00943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00943-1

Keywords

Navigation