Skip to main content

Advertisement

Log in

ZNRF2 as an oncogene is transcriptionally regulated by CREB1 in breast cancer models

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

E3 ubiquitin ligase Zinc and Ring Finger 2 (ZNRF2) has been demonstrated to be engaged in the development of multiple cancers. Nevertheless, the function of ZNRF2 in breast cancer (BC) still unclear. In this work, we firstly analyzed the differentially expressed genes in BC by bioinformatics and found that ZNRF2 was highly expressed in BC. Consistently, we further confirmed that ZNRF2 was upregulated in BC tissues compared with adjacent normal tissues, and this was positively correlated with the poor prognosis and the higher pathological grades of patients with BC. Functional assays performed on HCC1937 and MCF-7 cells indicated that silencing of ZNRF2 suppressed cell proliferation, as evidenced by the decrease in the expression of cyclin A, PCNA and cyclin D1. Flow cytometry and Hoechst staining showed that knockdown of ZNRF2 induced cell apoptosis, which was verified by the upregulation of apoptosis genes such as Bax, cleaved PARP and Bim. ZNRF2 knockdown also inhibited in vivo tumor growth. But, instead, ZNRF2-overexpressed BC cells exhibited obvious malignant phenotypes. Additionally, we observed that cAMP response element binding protein 1 (CREB1) directly bound to the promoter sequence of ZNRF2 and thus activating its transcription, suggesting that ZNRF2 is transcriptionally regulated by CREB1. Additionally, ZNRF2 knockdown could reverse the proliferation-promoting action of CREB1 on BC cells, Hence, this study demonstrated that ZNRF2 might serve as a prospective therapeutic target for BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

References

  1. Ronckers CM, Land CE, Neglia JP, Meadows AT. Breast cancer. Lancet. 2005;366:1605–6.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    Article  PubMed  Google Scholar 

  3. Veronesi U, Boyle P, Goldhirsch A, Orecchia R, Viale G. Breast cancer. Lancet. 2005;365:1727–41.

    Article  PubMed  Google Scholar 

  4. Borcherding DC, Hugo ER, Fox SR, et al. Suppression of breast cancer by small molecules that block the prolactin receptor. Cancers (Basel). 2021;13:2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guda MR, Asuthkar S, Labak CM, et al. Targeting PDK4 inhibits breast cancer metabolism. Am J Cancer Res. 2018;8:1725–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Araki T, Milbrandt J. ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci. 2003;23:9385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoxhaj G, Najafov A, Toth R, Campbell DG, Prescott AR, MacKintosh C. ZNRF2 is released from membranes by growth factors and together with ZNRF1, regulates the Na+/K+ATPase. J Cell Sci. 2012;125:4662–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoxhaj G, Caddye E, Najafov A, et al. The E3 ubiquitin ligase ZNRF2 is a substrate of mTORC1 and regulates its activation by amino acids. Elife. 2016. https://doi.org/10.7554/eLife.12278.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang XF, Guo ZQ, Zhao CC, et al. The role of ZNRF2 in the growth of non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2016;20:4011–7.

    PubMed  Google Scholar 

  10. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61.

    Article  CAS  PubMed  Google Scholar 

  11. Sakamoto KM, Frank DA. CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res. 2009;15:2583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siu YT, Jin DY. CREB–a real culprit in oncogenesis. FEBS J. 2007;274:3224–32.

    Article  CAS  PubMed  Google Scholar 

  13. Seo HS, Liu DD, Bekele BN, et al. Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res. 2008;68:6065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu L, Guo X, Zhang P, Qi R, Li Z, Zhang S. Cyclic adenosine monophosphate-responsive element-binding protein activation predicts an unfavorable prognosis in patients with hepatocellular carcinoma. Onco Targets Ther. 2014;7:873–9.

    PubMed  PubMed Central  Google Scholar 

  15. Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG. Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep. 2007;18:953–8.

    CAS  PubMed  Google Scholar 

  16. Hu PC, Li K, Tian YH, et al. CREB1/Lin28/miR-638/VASP interactive network drives the development of breast cancer. Int J Biol Sci. 2019;15:2733–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu X, Wang M, Han Q, et al. ZNF326 promotes a malignant phenotype of breast cancer by interacting with DBC1. Mol Carcinog. 2018;57:1803–15.

    Article  CAS  PubMed  Google Scholar 

  18. Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  20. Berger BJ, Hall JE, Tidwell RR. The distribution of multiple doses of pentamidine in rats. Pharmacol Toxicol. 1990;66:234–6.

    Article  CAS  PubMed  Google Scholar 

  21. Kawabe H, Brose N. The role of ubiquitylation in nerve cell development. Nat Rev Neurosci. 2011;12:251–68.

    Article  CAS  PubMed  Google Scholar 

  22. Ang XL, Harper JW. Interwoven ubiquitination oscillators and control of cell cycle transitions. Sci STKE. 2004;2004:31.

    Article  Google Scholar 

  23. Broemer M, Meier P. Ubiquitin-mediated regulation of apoptosis. Trends Cell Biol. 2009;19:130–40.

    Article  CAS  PubMed  Google Scholar 

  24. Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol. 2003;19:141–72.

    Article  CAS  PubMed  Google Scholar 

  25. Huang TT, D’Andrea AD. Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol. 2006;7:323–34.

    Article  CAS  PubMed  Google Scholar 

  26. Ma J, Lu Y, Zhang S, et al. beta-Trcp ubiquitin ligase and RSK2 kinase-mediated degradation of FOXN2 promotes tumorigenesis and radioresistance in lung cancer. Cell Death Differ. 2018;25:1473–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Satija YK, Bhardwaj A, Das S. A portrayal of E3 ubiquitin ligases and deubiquitylases in cancer. Int J Cancer. 2013;133:2759–68.

    CAS  PubMed  Google Scholar 

  28. Ko YS, Rugira T, Jin H, Park SW, Kim HJ. Oleandrin and Its derivative odoroside a, both cardiac glycosides, exhibit anticancer effects by inhibiting invasion via suppressing the STAT-3 signaling pathway. Int J Mol Sci. 2018;19:3350.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fujii T, Shimizu T, Yamamoto S, et al. Crosstalk between Na(+), K(+)-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:3792–804.

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Zheng J, Chen S, Meng FD, Ning J, Sun SL. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2alpha/ATF4/CHOP pathway in breast cancer. Cell Death Dis. 2021;12:314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Shen S, Zhang Z, Zhang W, Xiao W. Ubiquitin-conjugating enzyme complex Uev1A-Ubc13 promotes breast cancer metastasis through nuclear factor-small ka, CyrillicB mediated matrix metalloproteinase-1 gene regulation. Breast Cancer Res. 2014;16:R75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu X, Zhang W, Font-Burgada J, et al. Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proc Natl Acad Sci U S A. 2014;111:13870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pulvino M, Liang Y, Oleksyn D, et al. Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood. 2012;120:1668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng J, Fan YH, Xu X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5:e1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gombodorj N, Yokobori T, Yoshiyama S, et al. Inhibition of ubiquitin-conjugating enzyme E2 may activate the degradation of hypoxia-inducible factors and thus, overcome cellular resistance to radiation in colorectal cancer. Anticancer Res. 2017;37:2425–36.

    Article  CAS  PubMed  Google Scholar 

  36. Ueki T, Park JH, Nishidate T, et al. Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res. 2009;69:8752–60.

    Article  CAS  PubMed  Google Scholar 

  37. Perez-Pena J, Corrales-Sanchez V, Amir E, Pandiella A, Ocana A. Ubiquitin-conjugating enzyme E2T (UBE2T) and denticleless protein homolog (DTL) are linked to poor outcome in breast and lung cancers. Sci Rep. 2017;7:17530.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Novershtern N, Regev A, Friedman N. Physical module networks: an integrative approach for reconstructing transcription regulation. Bioinformatics. 2011;27:i177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng T, Huang J, Xiang X, et al. Systematical analysis reveals a strong cancer relevance of CREB1-regulated genes. Cancer Cell Int. 2021;21:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Berdeaux R, Hutchins C. Anabolic and Pro-metabolic functions of CREB-CRTC in skeletal muscle: advantages and obstacles for Type 2 diabetes and cancer cachexia. Front Endocrinol (Lausanne). 2019;10:535.

    Article  PubMed  Google Scholar 

  41. Van de Velde S, Wiater E, Tran M, Hwang Y, Cole PA, Montminy M. CREB promotes beta cell gene expression by targeting Its coactivators to tissue-specific enhancers. Mol Cell Biol. 2019. https://doi.org/10.1128/MCB.00200-19.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Than TA, Lou H, Ji C, Win S, Kaplowitz N. Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells. J Biol Chem. 2011;286:22047–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Son J, Lee JH, Kim HN, Ha H, Lee ZH. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction. Biochem Biophys Res Commun. 2010;398:309–14.

    Article  CAS  PubMed  Google Scholar 

  44. Xia Y, Zhan C, Feng M, et al. Targeting CREB pathway suppresses small cell lung cancer. Mol Cancer Res. 2018;16:825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Linnerth NM, Greenaway JB, Petrik JJ, Moorehead RA. cAMP response element-binding protein is expressed at high levels in human ovarian adenocarcinoma and regulates ovarian tumor cell proliferation. Int J Gynecol Cancer. 2008;18:1248–57.

    Article  CAS  PubMed  Google Scholar 

  46. Xie S, Price JE, Luca M, Jean D, Ronai Z, Bar-Eli M. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene. 1997;15:2069–75.

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Ren Y, Zhuang H, et al. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets. 2015;19:985–95.

    Article  CAS  PubMed  Google Scholar 

  48. Park SA, Lee JW, Herbst RS, Koo JS. GSK-3alpha Is a novel target of CREB and CREB-GSK-3alpha signaling participates in cell viability in lung cancer. PLoS ONE. 2016;11:e0153075.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dimitrova N, Nagaraj AB, Razi A, et al. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer. Oncogene. 2017;36:2472–82.

    Article  CAS  PubMed  Google Scholar 

  50. Rao M, Zhu Y, Cong X, Li Q. Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. Oncol Rep. 2017;37:3361–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Dalian Municipal Central Hospital.

Author information

Authors and Affiliations

Authors

Contributions

J-TL, LZ, and BC performed study concept and design; J-TL, Z-XS, RZ, Y-DZ and TW performed development of methodology, and data curation; J-TL, Z-XS, RZ, Y-DH, JHB provided acquisition, analysis and interpretation of data, and statistical analysis; J-TL, LZ and BC. were responsible for the writing and review of the manuscript. LZ and BC provided technical and material support. All authors read and approved the final paper.

Corresponding authors

Correspondence to Lei Zhang or Bo Chen.

Ethics declarations

Conflicts of interest

The authors report no conflict of interest.

Ethical approval

The human subject study was approved by the Ethics Committee of Dalian Municipal Central Hospital (License no. 2022–044-01). The animal experiments were undertaken in strict compliance with the Guide for the Care and Use of Laboratory Animals, and was approved by the Ethics Committee of Dalian Municipal Central Hospital (License no. 2022–044-02).

Informed consent

We have obtained the consent from all subjects and our studies agreed to the principles set out in the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 307 KB)

Supplementary file2 (DOCX 10335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JT., Sun, ZX., Zhong, R. et al. ZNRF2 as an oncogene is transcriptionally regulated by CREB1 in breast cancer models. Human Cell 36, 1501–1515 (2023). https://doi.org/10.1007/s13577-023-00913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00913-7

Keywords

Navigation