Skip to main content

Advertisement

Log in

FOXN3 inhibits the progression of ovarian cancer through negatively regulating the expression of RPS15A

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ovarian cancer is the second most common cause of gynecological cancer death and has a high recurrence rate. FOXN3, a transcription inhibitor belonging to FOX family, has anti-tumor effects on several cancers. Bioinformatics analysis revealed that the expression of FOXN3 was downregulated in ovarian cancer specimens. However, the role of FOXN3 in ovarian cancer remains unclear. Herein, we investigated the role of FOXN3 in ovarian cancer using OVCAR3 and A2780 cells. Flow cytometry and CCK-8 analysis showed that overexpression of FOXN3 inhibited the proliferation and cell cycle progression of OVCAR3 cells. Cell invasion and migration abilities were decreased by FOXN3 according to transwell and wound healing assays. The suppression of FOXN3 on angiogenesis in OVCAR3 cells was evidenced by reduced vessel formation and VEGFA protein expression. Taken together, FOXN3 had an inhibitory effect on the proliferation, migration, invasion and angiogenesis of OVCAR3 cells, while its knockdown exhibited an opposite effect in A2780 cells. By inoculation of FOXN3-overexpressing cells into nude mice, tumorigenesis assay demonstrated that FOXN3 could delay the growth of ovarian cancer cells in vivo. The interaction between FOXN3 and RPS15A was preliminarily explored via dual-luciferases assay and ChIP. FOXN3 was confirmed to bind to the promoter (at − 1588/− 1581 and − 1476/− 1467) of gene RPS15A and inhibit its transcriptional expression. We further found that overexpression of RPS15A diminished the inhibition of FOXN3 on ovarian cancer cell malignant behaviors. These findings indicate that FOXN3 negatively regulates the expression of RPS15A and thus suppresses the progression of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated during the current study are included in the article.

References

  1. Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80(6):609–16.

    PubMed  Google Scholar 

  2. Penny SM. Ovarian cancer: an overview. Radiol Technol. 2020;91(6):561–75.

    PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.

    Article  PubMed  Google Scholar 

  4. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96. https://doi.org/10.3322/caac.21456.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dubey JP, Lindsay DS, Speer CA, Fayer R, Livingston CW Jr. Sarcocystis arieticanis and other Sarcocystis species in sheep in the United States. J Parasitol. 1988;74(6):1033–8.

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, He X, Liu X, Yu J, Zhang M, Yu F, et al. RPS15A promotes gastric cancer progression via activation of the Akt/IKK-beta/NF-kappaB signalling pathway. J Cell Mol Med. 2019;23(3):2207–18. https://doi.org/10.1111/jcmm.14141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kong L, Wei Q, Hu X, Chen L, Li J. Ribosomal protein small subunit 15A (RPS15A) inhibits the apoptosis of breast cancer MDA-MB-231 cells via upregulating phosphorylated ERK1/2, Bad, and Chk1. J Cell Biochem. 2020;121(1):587–95. https://doi.org/10.1002/jcb.29304.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao X, Shen L, Feng Y, Yu H, Wu X, Chang J, et al. Decreased expression of RPS15A suppresses proliferation of lung cancer cells. Tumour Biol. 2015;36(9):6733–40. https://doi.org/10.1007/s13277-015-3371-9.

    Article  CAS  PubMed  Google Scholar 

  9. Guo P, Wang Y, Dai C, Tao C, Wu F, Xie X, et al. Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/beta-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene. 2018;37(9):1220–36. https://doi.org/10.1038/s41388-017-0017-y.

    Article  CAS  PubMed  Google Scholar 

  10. Yang H, Qi Y, Wang XL, Gu JJ, Shi TM. Down-regulation of lncRNA BLACAT1 inhibits ovarian cancer progression by suppressing the Wnt/beta-catenin signaling pathway via regulating miR-519d-3p. Mol Cell Biochem. 2020;467(1–2):95–105. https://doi.org/10.1007/s11010-020-03704-y.

    Article  CAS  PubMed  Google Scholar 

  11. Kong X, Zhai J, Yan C, Song Y, Wang J, Bai X, et al. Recent advances in understanding FOXN3 in breast cancer, and other malignancies. Front Oncol. 2019;9:234. https://doi.org/10.3389/fonc.2019.00234.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li W, Zhang Z, Liu X, Cheng X, Zhang Y, Han X, et al. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J Clin Invest. 2017;127(9):3421–40. https://doi.org/10.1172/JCI94233.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, et al. FOXA1 Suppresses the Growth, migration, and invasion of nasopharyngeal carcinoma cells through repressing miR-100-5p and miR-125b-5p. J Cancer. 2020;11(9):2485–95. https://doi.org/10.7150/jca.40709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu Z, Yang Y, Li B, Li Y, Xia K, Yang Y, et al. Checkpoint suppressor 1 suppresses transcriptional activity of ERalpha and breast cancer cell proliferation via deacetylase SIRT1. Cell Death Dis. 2018;9(5):559. https://doi.org/10.1038/s41419-018-0629-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun J, Li H, Huo Q, Cui M, Ge C, Zhao F, et al. The transcription factor FOXN3 inhibits cell proliferation by downregulating E2F5 expression in hepatocellular carcinoma cells. Oncotarget. 2016;7(28):43534–45. https://doi.org/10.18632/oncotarget.9780.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983;43(11):5379–89.

    CAS  PubMed  Google Scholar 

  17. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280–304. https://doi.org/10.3322/caac.21559.

    Article  PubMed  Google Scholar 

  18. Xue W, Ma L, Wang Z, Zhang W, Zhang X. FOXN3 is downregulated in osteosarcoma and transcriptionally regulates SIRT6, and suppresses migration and invasion in osteosarcoma. Oncol Rep. 2019;41(2):1404–14. https://doi.org/10.3892/or.2018.6878.

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Li X, Guo Z, Xu F, Xia J, Liu Z et al. MicroRNA-574–5p was pivotal for TLR9 signaling enhanced tumor progression via down-regulating checkpoint suppressor 1 in human lung cancer. PLoS One. 2012;7(11):e48278. doi:https://doi.org/10.1371/journal.pone.0048278.

  20. Markowski J, Tyszkiewicz T, Jarzab M, Oczko-Wojciechowska M, Gierek T, Witkowska M, et al. Metal-proteinase ADAM12, kinesin 14 and checkpoint suppressor 1 as new molecular markers of laryngeal carcinoma. Eur Arch Otorhinolaryngol. 2009;266(10):1501–7. https://doi.org/10.1007/s00405-009-1019-3.

    Article  PubMed  Google Scholar 

  21. Ying H, Lyu J, Ying T, Li J, Jin S, Shao J, et al. Risk miRNA screening of ovarian cancer based on miRNA functional synergistic network. J Ovarian Res. 2014;7:9. https://doi.org/10.1186/1757-2215-7-9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dai Y, Wang M, Wu H, Xiao M, Liu H, Zhang D. Loss of FOXN3 in colon cancer activates beta-catenin/TCF signaling and promotes the growth and migration of cancer cells. Oncotarget. 2017;8(6):9783–93. https://doi.org/10.18632/oncotarget.14189.

    Article  PubMed  Google Scholar 

  23. Scott KL, Plon SE. CHES1/FOXN3 interacts with Ski-interacting protein and acts as a transcriptional repressor. Gene. 2005;359:119–26. https://doi.org/10.1016/j.gene.2005.06.014.

    Article  CAS  PubMed  Google Scholar 

  24. Katayama M, Hirai S, Kamihagi K, Nakagawa K, Yasumoto M, Kato I. Soluble E-cadherin fragments increased in circulation of cancer patients. Br J Cancer. 1994;69(3):580–5. https://doi.org/10.1038/bjc.1994.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22. https://doi.org/10.1016/j.critrevonc.2017.11.010.

    Article  PubMed  Google Scholar 

  26. Zhou P, Xiong T, Chen J, Li F, Qi T, Yuan J. Clinical significance of melanoma cell adhesion molecule CD146 and VEGFA expression in epithelial ovarian cancer. Oncol Lett. 2019;17(2):2418–24. https://doi.org/10.3892/ol.2018.9840.

    Article  CAS  PubMed  Google Scholar 

  27. Premalata CS, Umadevi K, Shobha K, Anurekha M, Krishnamoorthy L. Expression of VEGF-A in epithelial ovarian cancer: correlation with morphologic types, grade and clinical stage. Gulf J Oncolog. 2016;1(21):49–54.

    CAS  PubMed  Google Scholar 

  28. Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273(2):114–27. https://doi.org/10.1111/joim.12019.

    Article  CAS  PubMed  Google Scholar 

  29. Wan BS, Wang XY, Tiang J, Zhou C, Lin J, Wang Z. Ribosomal protein RPS15A augments proliferation of colorectal cancer RKO cells via regulation of BIRC3, p38 MAPK and Chk1. Eur Rev Med Pharmacol Sci. 2021;25(11):3967–80. https://doi.org/10.26355/eurrev_202106_26037.

    Article  PubMed  Google Scholar 

  30. Liang J, Liu Z, Zou Z, Wang X, Tang Y, Zhou C, et al. Knockdown of ribosomal protein S15A inhibits human kidney cancer cell growth in vitro and in vivo. Mol Med Rep. 2019;19(2):1117–27. https://doi.org/10.3892/mmr.2018.9751.

    Article  CAS  PubMed  Google Scholar 

  31. Xu W, Li Y, Ye X, Ji Y, Chen Y, Zhang X, et al. TMED3/RPS15A Axis promotes the development and progression of osteosarcoma. Cancer Cell Int. 2021;21(1):630. https://doi.org/10.1186/s12935-021-02340-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huot G, Vernier M, Bourdeau V, Doucet L, Saint-Germain E, Gaumont-Leclerc MF, et al. CHES1/FOXN3 regulates cell proliferation by repressing PIM2 and protein biosynthesis. Mol Biol Cell. 2014;25(5):554–65. https://doi.org/10.1091/mbc.E13-02-0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mudduluru G, Abba M, Batliner J, Patil N, Scharp M, Lunavat TR, et al. A Systematic approach to defining the microRNA landscape in metastasis. Cancer Res. 2015;75(15):3010–9. https://doi.org/10.1158/0008-5472.CAN-15-0997.

    Article  CAS  PubMed  Google Scholar 

  34. Karanth S, Zinkhan EK, Hill JT, Yost HJ, Schlegel A. FOXN3 regulates hepatic glucose utilization. Cell Rep. 2016;15(12):2745–55. https://doi.org/10.1016/j.celrep.2016.05.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurman RJ, Shih IM. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186(4):733–47. https://doi.org/10.1016/j.ajpath.2015.11.011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hollis RL. Molecular characteristics and clinical behaviour of epithelial ovarian cancers. Cancer Lett. 2023;555:216057. doi:https://doi.org/10.1016/j.canlet.2023.216057.

  37. Wang C, Tu H, Yang L, Ma C, Hu J, Luo J, et al. FOXN3 inhibits cell proliferation and invasion via modulating the AKT/MDM2/p53 axis in human glioma. Aging (Albany NY). 2021;13(17):21587–98. https://doi.org/10.18632/aging.203499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, Wei Y, Feng Q, Ren L, He G, Chang W, et al. Ribosomal protein S15A promotes malignant transformation and predicts poor outcome in colorectal cancer through misregulation of p53 signaling pathway. Int J Oncol. 2016;48(4):1628–38. https://doi.org/10.3892/ijo.2016.3366.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 82001846) and the 345 Talent Project of Shengjing Hospital of China Medical University.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 82001846) and the 345 Talent Project of Shengjing Hospital of China Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Qi.

Ethics declarations

Conflict of interest

None.

Ethical approval

All clinical studies and animal studies were approved by the ethics committee of Shengjing Hospital of China Medical University. All animal experiments were performed by the Guide for the Care and Use of Laboratory Animals. The clinical studies in human were conducted in accordance with the principles of the Helsinki Declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, M. & Qi, Y. FOXN3 inhibits the progression of ovarian cancer through negatively regulating the expression of RPS15A. Human Cell 36, 1120–1134 (2023). https://doi.org/10.1007/s13577-023-00876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00876-9

Keywords

Navigation