Skip to main content

Advertisement

Log in

ELK1 suppresses SYTL1 expression by recruiting HDAC2 in bladder cancer progression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

ETS transcription factor (ELK1) stimulates the expression of genes at the onset of the cell cycle and participates in early developmental programming. Here, we investigated whether alterations of ELK1 lead to progression of bladder cancer (BCa), a main neoplasm of urinary tract, and clarified the function of ELK1 in BCa. Using the GEO database, we identified ELK1 as the most significantly overexpressed gene in BCa, which was substantiated in the acquired clinical samples and cells. Silencing of ELK1 inhibited the malignant phenotype of BCa cells. Further analysis revealed that ELK1 synergized with histone deacetylase 2 (HDAC2) to specifically bind to the synaptotagmin like 1 (SYTL1) promoter, thereby repressing SYTL1 transcription and protein expression. Depletion of SYTL1 reversed the repressive effects of ELK1 depletion on the malignant phenotype of BCa cells. Our in vitro findings were reproduced in vivo on a nude mouse tumorigenic model. Together, our results reveal that ELK1, through suppression of SYTL1 via HDAC2, supports the malignant phenotype of BCa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Abbreviations

BCa:

Bladder cancer

ChIP:

Chromatin immunoprecipitation

ELK1:

ETS transcription factor

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HDAC2:

Histone deacetylase 2

RIPA:

Radioimmunoprecipitation assay

SYTL1:

Synaptotagmin like 1

References

  1. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmstrom PU, Choi W, Guo CC, Lotan Y, Kassouf W. Bladder cancer. Lancet. 2016;388(10061):2796–810. https://doi.org/10.1016/S0140-6736(16)30512-8.

    Article  PubMed  Google Scholar 

  2. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y. Bladder cancer. Nat Rev Dis Primers. 2017;3:17022. https://doi.org/10.1038/nrdp.2017.22.

    Article  PubMed  Google Scholar 

  3. Abufaraj M, Gust K, Moschini M, Foerster B, Soria F, Mathieu R, Shariat SF. Management of muscle invasive, locally advanced and metastatic urothelial carcinoma of the bladder: a literature review with emphasis on the role of surgery. Transl Androl Urol. 2016;5(5):735–44. https://doi.org/10.21037/tau.2016.08.23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abufaraj M, Dalbagni G, Daneshmand S, Horenblas S, Kamat AM, Kanzaki R, Zlotta AR, Shariat SF. The role of surgery in metastatic bladder cancer: a systematic review. Eur Urol. 2018;73(4):543–57. https://doi.org/10.1016/j.eururo.2017.09.030.

    Article  PubMed  Google Scholar 

  5. Carneiro BA, Meeks JJ, Kuzel TM, Scaranti M, Abdulkadir SA, Giles FJ. Emerging therapeutic targets in bladder cancer. Cancer Treat Rev. 2015;41(2):170–8. https://doi.org/10.1016/j.ctrv.2014.11.003.

    Article  CAS  PubMed  Google Scholar 

  6. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25–41. https://doi.org/10.1038/nrc3817.

    Article  CAS  PubMed  Google Scholar 

  7. Henning GM, Barashi NS, Smith ZL. Advances in biomarkers for detection, surveillance, and prognosis of bladder cancer. Clin Genitourin Cancer. 2021;19(3):194–8. https://doi.org/10.1016/j.clgc.2020.12.003.

    Article  PubMed  Google Scholar 

  8. Tang C, Wu Y, Wang X, Chen K, Tang Z, Guo X. LncRNA MAFG-AS1 regulates miR-125b-5p/SphK1 axis to promote the proliferation, migration, and invasion of bladder cancer cells. Hum Cell. 2021;34(2):588–97. https://doi.org/10.1007/s13577-020-00470-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Inoue S, Ide H, Mizushima T, Jiang G, Kawahara T, Miyamoto H. ELK1 promotes urothelial tumorigenesis in the presence of an activated androgen receptor. Am J Cancer Res. 2018;8(11):2325–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salmon M, Gomez D, Greene E, Shankman L, Owens GK. Cooperative binding of KLF4, pELK-1, and HDAC2 to a G/C repressor element in the SM22alpha promoter mediates transcriptional silencing during SMC phenotypic switching in vivo. Circ Res. 2012;111(6):685–96. https://doi.org/10.1161/CIRCRESAHA.112.269811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol. 2015;7(9): a025064. https://doi.org/10.1101/cshperspect.a025064.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94. https://doi.org/10.1073/pnas.51.5.786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jaguva Vasudevan AA, Hoffmann MJ, Poschmann G, Petzsch P, Wiek C, Stuhler K, Kohrer K, Schulz WA, Niegisch G. Proteomic and transcriptomic profiles of human urothelial cancer cells with histone deacetylase 5 overexpression. Sci Data. 2022;9(1):240. https://doi.org/10.1038/s41597-022-01319-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinkerneil M, Hoffmann MJ, Deenen R, Kohrer K, Arent T, Schulz WA, Niegisch G. Inhibition of class I histone deacetylases 1 and 2 promotes urothelial carcinoma cell death by various mechanisms. Mol Cancer Ther. 2016;15(2):299–312. https://doi.org/10.1158/1535-7163.MCT-15-0618.

    Article  CAS  PubMed  Google Scholar 

  15. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  16. Kelle D, Kirimtay K, Selcuk E, Karabay A. Elk1 affects katanin and spastin proteins via differential transcriptional and post-transcriptional regulations. PLoS ONE. 2019;14(2): e0212518. https://doi.org/10.1371/journal.pone.0212518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elbadawy M, Sato Y, Mori T, Goto Y, Hayashi K, Yamanaka M, Azakami D, Uchide T, Fukushima R, Yoshida T, Shibutani M, Kobayashi M, Shinohara Y, Abugomaa A, Kaneda M, Yamawaki H, Usui T, Sasaki K. Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biol Ther. 2021;22(5–6):357–71. https://doi.org/10.1080/15384047.2021.1919004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan Q, Ni C, Lin Y, Sun X, Shen Z, Zhang M, Han S, Shi J, Mao J, Yang Z, Wang W. ELK1 enhances pancreatic cancer progression via LGMN and correlates with poor prognosis. Front Mol Biosci. 2021;8: 764900. https://doi.org/10.3389/fmolb.2021.764900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li S, Li X, Xing X, Wang L. miR-597-5p inhibits cell growth and promotes cell apoptosis by targeting ELK1 in pancreatic cancer. Hum Cell. 2020;33(4):1165–75. https://doi.org/10.1007/s13577-020-00395-x.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao C, Li L, Li Z, Xu J, Yang Q, Shi P, Zhang K, Jiang R. A Novel Circular RNA hsa_circRPPH1_015 Exerts an Oncogenic Role in Breast Cancer by Impairing miRNA-326-Mediated ELK1 Inhibition. Front Oncol. 2020;10:906. https://doi.org/10.3389/fonc.2020.00906.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kawahara T, Shareef HK, Aljarah AK, Ide H, Li Y, Kashiwagi E, Netto GJ, Zheng Y, Miyamoto H. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget. 2015;6(30):29860–76. https://doi.org/10.18632/oncotarget.5007.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lv P, Xue Y. ETS like-1 protein ELK1-induced lncRNA LINC01638 accelerates the progression of papillary thyroid cancer by regulating Axin2 through Wnt/beta-catenin signaling pathway. Bioengineered. 2021;12(1):3873–85. https://doi.org/10.1080/21655979.2021.1935404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang S, Zhang H, Liu H, Guo X, Ma R, Zhu W, Gao P. ELK1-induced up-regulation of KIF26B promotes cell cycle progression in breast cancer. Med Oncol. 2021;39(1):15. https://doi.org/10.1007/s12032-021-01607-6.

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Chen S, Song X, Gui J, Li Y, Li M. ELK1/lncRNA-SNHG7/miR-2682-5p feedback loop enhances bladder cancer cell growth. Life Sci. 2020;262: 118386. https://doi.org/10.1016/j.lfs.2020.118386.

    Article  CAS  PubMed  Google Scholar 

  25. Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res. 2019;4:41. https://doi.org/10.12688/wellcomeopenres.15091.2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang SH, Sharrocks AD. PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. Mol Cell. 2006;22(4):477–87. https://doi.org/10.1016/j.molcel.2006.03.037.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen-Armon M. PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci. 2007;28(11):556–60. https://doi.org/10.1016/j.tips.2007.08.005.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida T, Gan Q, Owens GK. Kruppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol. 2008;295(5):C1175-1182. https://doi.org/10.1152/ajpcell.00288.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoffmann MJ, Meneceur S, Hommel K, Schulz WA, Niegisch G. Downregulation of cell cycle and checkpoint genes by class I hdac inhibitors limits synergism with G2/M checkpoint inhibitor MK-1775 in bladder cancer cells. Genes (Basel). 2021. https://doi.org/10.3390/genes12020260.

    Article  PubMed Central  Google Scholar 

  30. Pinkerneil M, Hoffmann MJ, Kohlhof H, Schulz WA, Niegisch G. Evaluation of the therapeutic potential of the novel isotype specific HDAC inhibitor 4SC-202 in urothelial carcinoma cell lines. Target Oncol. 2016;11(6):783–98. https://doi.org/10.1007/s11523-016-0444-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Wang Y, Zhang S, Zhu Y, Wang J. Exploration of prognostic biomarkers of muscle-invasive bladder cancer (MIBC) by bioinformatics. Evol Bioinform Online. 2021;17:11769343211049270. https://doi.org/10.1177/11769343211049270.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yokoyama T, Nakatake M, Kuwata T, Couzinet A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJ, Delwel R, Nakamura T. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest. 2016;126(5):1664–78. https://doi.org/10.1172/JCI81516.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Hunan Province (No. 2021JJ30403).

Author information

Authors and Affiliations

Authors

Contributions

JSW and JJL: Conceptualization, Manuscript preparation, Methodology, Experimental studies, Software; Statistical analysis; XCW and ZL: Visualization, Experimental studies, Statistical analysis; Data curation, Manuscript preparation, Reviewing and Editing, Validation; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuo Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Collection of samples and experiments with samples were approved by the Ethical Committee of Hunan Provincial People’s Hospital under Project License 20180122. Written informed consent for the present study was obtained from patients. All animal experimental procedures and animal care were in accordance with the guidelines provided by the NIH. The Animal Experiment Ethics Committee of Hunan Provincial People’s Hospital approved the experiments and projects related to experimental animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Luo, J., Wu, X. et al. ELK1 suppresses SYTL1 expression by recruiting HDAC2 in bladder cancer progression. Human Cell 35, 1961–1975 (2022). https://doi.org/10.1007/s13577-022-00789-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00789-z

Keywords

Navigation