Skip to main content

Advertisement

Log in

FOSL2 deficiency delays nonalcoholic steatohepatitis progression by regulating LY6D-mediated NLRP3 activation

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Lymphocyte antigen 6 family member D (LY6D) was enhanced specifically in senescent cells, while its effects on pyroptosis, a programmed cell death, remains unknown. The goal of this study was to assess the role of LY6D in the mediation of pyroptosis during nonalcoholic steatohepatitis (NASH). After screening out LY6D as a specific liver fibrosis-associated gene using the GSE55747 dataset from the GEO database, we established a NASH mouse model using methionine and choline deficient-diet feeding and an in vitro model using lipopolysaccharide (LPS)-treated hepatocytes. LY6D was overexpressed in NASH livers as well as in LPS-treated hepatocytes. Silencing of LY6D inhibited NASH-associated hepatocyte pyroptosis. With the aid of bioinformatics analysis, promoter-luciferase reporter and ChIP-qPCR assays, we identified FOSL2 as an upstream transcription factor of LY6D. FOSL2, which was highly expressed in NASH, promoted LY6D transcription by binding to the promoter of LY6D. Depletion of FOSL2 significantly inhibited NASH-associated hepatocyte pyroptosis, which was significantly reversed after overexpression of LY6D. Moreover, the promotion of hepatocyte pyroptosis by the FOSL2/LY6D axis was significantly attenuated by specific inhibition of NLRP3. These findings suggesting that FOSL2/LY6D axis may be a key molecular axis and a potential target for NASH therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

Abbreviations

NASH:

Nonalcoholic steatohepatitis

LY6D:

Lymphocyte antigen 6 family member D

LPS:

Lipopolysaccharide

Gsdmd-N:

Gasdermin D N-terminal

α-SMA:

Alpha-smooth muscle actin

AAV:

Adeno-associated virus

MCD:

Methionine and choline deficient

HE:

Hematoxylin–eosin

HRP:

Horseradish peroxidase

ELISA:

Enzyme-linked immunosorbent assay

HBSS:

Hanks' buffered salt solution

ChIP:

Chromatin immunoprecipitation

References

  1. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063–72. https://doi.org/10.1056/NEJMra1503519.

    Article  CAS  PubMed  Google Scholar 

  2. Alegre F, Pelegrin P, Feldstein AE. Inflammasomes in liver fibrosis. Semin Liver Dis. 2017;37(2):119–27. https://doi.org/10.1055/s-0037-1601350.

    Article  CAS  PubMed  Google Scholar 

  3. Wree A, Mehal WZ, Feldstein AE. Targeting cell death and sterile inflammation loop for the treatment of nonalcoholic steatohepatitis. Semin Liver Dis. 2016;36(1):27–36. https://doi.org/10.1055/s-0035-1571272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan X, Xu C, Yu C, Li Y. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol. 2016;2016:6489012. https://doi.org/10.1155/2016/6489012.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eguchi A, Wree A, Feldstein AE. Biomarkers of liver cell death. J Hepatol. 2014;60(5):1063–74. https://doi.org/10.1016/j.jhep.2013.12.026.

    Article  CAS  PubMed  Google Scholar 

  6. McKenzie IF, Gardiner J, Cherry M, Snell GD. Lymphocyte antigens: Ly-4, Ly-6, and Ly-7. Transpl Proc. 1977;9(1):667–9.

    CAS  Google Scholar 

  7. Torenbeek R, Blomjous CE, Quak JJ, Ybema S, Meijer CJ. Use of monoclonal antibody E48 in diagnosing transitional cell carcinoma of urinary bladder. J Clin Pathol. 1992;45(4):303–7. https://doi.org/10.1136/jcp.45.4.303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nagano T, Yamao S, Terachi A, Yarimizu H, Itoh H, Katasho R, Kawai K, Nakashima A, Iwasaki T, Kikkawa U, Kamada S (2019) d-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species. Life Sci Alliance 2 (1). doi:https://doi.org/10.26508/lsa.201800045

  9. Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, Idarraga MH, Kenner L, Wagner EF. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc Natl Acad Sci USA. 2008;105(30):10525–30. https://doi.org/10.1073/pnas.0801414105.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liao S, He H, Zeng Y, Yang L, Liu Z, An Z, Zhang M. A nomogram for predicting metabolic steatohepatitis: the combination of NAMPT, RALGDS, GADD45B, FOSL2, RTP3, and RASD1. Open Med (Wars). 2021;16(1):773–85. https://doi.org/10.1515/med-2021-0286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA (2022) In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 25 (1):103549. https://doi.org/10.1016/j.isci.2021.103549

  12. Zhai T, Xu W, Liu Y, Qian K, Xiong Y, Chen Y. Honokiol alleviates methionine-choline deficient diet-induced hepatic steatosis and oxidative stress in C57BL/6 mice by regulating CFLAR-JNK pathway. Oxid Med Cell Longev. 2020;2020:2313641. https://doi.org/10.1155/2020/2313641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, Jin T, Jiang W, Deng X, Zhou R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214(11):3219–38. https://doi.org/10.1084/jem.20171419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tan S, Lu Y, Xu M, Huang X, Liu H, Jiang J, Wu B. beta-Arrestin1 enhances liver fibrosis through autophagy-mediated Snail signaling. FASEB J. 2019;33(2):2000–16. https://doi.org/10.1096/fj.201800828RR.

    Article  CAS  PubMed  Google Scholar 

  15. Enomoto H, Bando Y, Nakamura H, Nishiguchi S, Koga M. Liver fibrosis markers of nonalcoholic steatohepatitis. World J Gastroenterol. 2015;21(24):7427–35. https://doi.org/10.3748/wjg.v21.i24.7427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andersson N, Ohlsson J, Wahlin S, Nodin B, Boman K, Lundgren S, Jirstrom K. Lymphocyte antigen 6 superfamily member D is a marker of urothelial and squamous differentiation: implications for risk stratification of bladder cancer. Biomark Res. 2020;8:51. https://doi.org/10.1186/s40364-020-00232-1.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nagano T, Iwasaki T, Onishi K, Awai Y, Terachi A, Kuwaba S, Asano S, Katasho R, Nagai K, Nakashima A, Kikkawa U, Kamada S. LY6D-induced macropinocytosis as a survival mechanism of senescent cells. J Biol Chem. 2021;296: 100049. https://doi.org/10.1074/jbc.RA120.013500.

    Article  CAS  PubMed  Google Scholar 

  18. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66(5):1037–46. https://doi.org/10.1016/j.jhep.2017.01.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chu J, Yan R, Wang S, Li G, Kang X, Hu Y, Lin M, Shan W, Zhao Y, Wang Z, Sun R, Yao J, Zhang N. Sinapic acid reduces oxidative stress and pyroptosis via inhibition of BRD4 in alcoholic liver disease. Front Pharmacol. 2021;12: 668708. https://doi.org/10.3389/fphar.2021.668708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang T, Li J, Liu CP, Guo M, Gao CL, Zhou LP, Long Y, Xu Y. Butyrate ameliorates alcoholic fatty liver disease via reducing endotoxemia and inhibiting liver gasdermin D-mediated pyroptosis. Ann Transl Med. 2021;9(10):873. https://doi.org/10.21037/atm-21-2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Zhao H, Lu J, Lin K, Ni J, Wu G, Tang H. Caspase-11-mediated hepatocytic pyroptosis promotes the progression of nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2021;12(2):653–64. https://doi.org/10.1016/j.jcmgh.2021.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in liver disease: new insights into disease mechanisms. Aging Dis. 2019;10(5):1094–108. https://doi.org/10.14336/AD.2019.0116.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5. https://doi.org/10.1038/nature15514.

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Wang J, Liu ZG. Multi-faceted role of pyroptosis mediated by inflammasome in liver fibrosis. J Cell Mol Med. 2022;26(10):2757–65. https://doi.org/10.1111/jcmm.17277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu B, Jiang M, Chu Y, Wang W, Chen D, Li X, Zhang Z, Zhang D, Fan D, Nie Y, Shao F, Wu K, Liang J. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2018;68(4):773–82. https://doi.org/10.1016/j.jhep.2017.11.040.

    Article  CAS  PubMed  Google Scholar 

  26. Maguire M, Bushkofsky JR, Larsen MC, Foong YH, Tanumihardjo SA, Jefcoate CR. Diet-dependent retinoid effects on liver gene expression include stellate and inflammation markers and parallel effects of the nuclear repressor Shp. J Nutr Biochem. 2017;47:63–74. https://doi.org/10.1016/j.jnutbio.2017.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Birnhuber A, Biasin V, Schnoegl D, Marsh LM, Kwapiszewska G. Transcription factor Fra-2 and its emerging role in matrix deposition, proliferation and inflammation in chronic lung diseases. Cell Signal. 2019;64: 109408. https://doi.org/10.1016/j.cellsig.2019.109408.

    Article  CAS  PubMed  Google Scholar 

  28. Ucero AC, Bakiri L, Roediger B, Suzuki M, Jimenez M, Mandal P, Braghetta P, Bonaldo P, Paz-Ares L, Fustero-Torre C, Ximenez-Embun P, Hernandez AI, Megias D, Wagner EF. Fra-2-expressing macrophages promote lung fibrosis in mice. J Clin Invest. 2019;129(8):3293–309. https://doi.org/10.1172/JCI125366.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roy S, Khanna S, Azad A, Schnitt R, He G, Weigert C, Ichijo H, Sen CK. Fra-2 mediates oxygen-sensitive induction of transforming growth factor beta in cardiac fibroblasts. Cardiovasc Res. 2010;87(4):647–55. https://doi.org/10.1093/cvr/cvq123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hannemann N, Cao S, Eriksson D, Schnelzer A, Jordan J, Eberhardt M, Schleicher U, Rech J, Ramming A, Uebe S, Ekici A, Canete JD, Chen X, Bauerle T, Vera J, Bogdan C, Schett G, Bozec A. Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J Clin Invest. 2019;129(7):2669–84. https://doi.org/10.1172/JCI96832.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, Hoffman HM, Feldstein AE. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2014;59(3):898–910. https://doi.org/10.1002/hep.26592.

    Article  CAS  PubMed  Google Scholar 

  32. Ramos-Tovar E, Muriel P (2020) Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 9 (12). https://doi.org/10.3390/antiox9121279

  33. Li Z, Huang Z, Zhang H, Lu J, Tian Y, Wei Y, Yang Y, Bai L. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-kappaB/NLRP3 crosstalk. Oxid Med Cell Longev. 2021;2021:8868361. https://doi.org/10.1155/2021/8868361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oh S, Son M, Byun KA, Jang JT, Choi CH, Son KH, Byun K (2021) Attenuating Effects of Dieckol on High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Decreasing the NLRP3 Inflammasome and Pyroptosis. Mar Drugs 19 (6). https://doi.org/10.3390/md19060318

  35. Wang P, Ni M, Tian Y, Wang H, Qiu J, You W, Wei S, Shi Y, Zhou J, Cheng F, Rao J, Lu L (2021) Myeloid Nrf2 deficiency aggravates non-alcoholic steatohepatitis progression by regulating YAP-mediated NLRP3 inflammasome signaling. iScience 24 (5):102427. https://doi.org/10.1016/j.isci.2021.102427

  36. Senoo H, Mezaki Y, Fujiwara M. The stellate cell system (vitamin A-storing cell system). Anat Sci Int. 2017;92(4):387–455. https://doi.org/10.1007/s12565-017-0395-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks to the Natural Science Foundation of Shandong Province (ZR2019BH021), Guangdong Basic and Applied Basic Research Foundation (2019A1515110116 and 2019A1515110221), Natural Science Foundation of Jiangsu Province (BK20200224) and Chinese Foundation for Hepatitis Prevention and Control-TianQing Liver Disease Research Fund Subject (TQGB20200043) for the funding support.

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2019BH021), Guangdong Basic and Applied Basic Research Foundation (2019A1515110116 and 2019A1515110221), Natural Science Foundation of Jiangsu Province (BK20200224) and Chinese Foundation for Hepatitis Prevention and Control-TianQing Liver Disease Research Fund Subject (TQGB20200043) and China International Medical Foundation (Z-2014–06-2102).

Author information

Authors and Affiliations

Authors

Contributions

PXH and MYS conceived the design of the research and carried out most of the experiments. YPL and CQZ obtained, analyzed and interpreted the data. PXH wrote and revised the manuscript. MYS, YPL and CQZ prepared the figures and provides financial support for all experiments. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yan-Ping Liu or Chun-Qing Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal procedures were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals and were approved by the Institutional Ethics Committee of Jinan Central Hospital (Approval number: 2021–08-07–01).

Consent to participate

Not applicable.

Consent for publication

All authors have given their consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, PX., Sheng, MY., Liu, YP. et al. FOSL2 deficiency delays nonalcoholic steatohepatitis progression by regulating LY6D-mediated NLRP3 activation. Human Cell 35, 1752–1765 (2022). https://doi.org/10.1007/s13577-022-00760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00760-y

Keywords

Navigation