Skip to main content

Advertisement

Log in

ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the biological function and molecular mechanism of ARPC1A (actin related protein 2/3 complex subunit 1A) in prostate cancer progression. RT–qPCR and IHC results showed that the level of ARPC1A in prostate cancer tissues was significantly higher than that in adjacent tissues. The results of TCGA (the cancer genome atlas) database analysis showed that high expression of ARPC1A indicates poor prognosis in prostate cancer patients. In vitro functional experiments confirmed that downregulation of ARPC1A expression resulted in decreased cell viability and invasive ability of prostate cancer cells, as ARPC1A knockdown promoted ferroptosis. The transcriptional regulation mechanism of STAT3 (signal transduction and activators of transcription 3) on ARPC1A was elucidated by Co-IP, ChIP and luciferase reporter assays. In vivo experiments also supported the in vitro results. We propose that reduced ARPC1A expression inhibits prostate cancer cell viability and invasion in a ferroptotic manner. The ARPC1A level may serve as an independent predictor of prognosis in prostate cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data and materials that were used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PCa:

Prostate cancer

ARPC1A:

Actin-related protein 2/3 complex subunit 1A

STAT3:

Signal transducer and activator of transcription 3

GPX4:

Glutathione peroxidase 4

SLC7A11:

Solute carrier family 7 member 11

PTGS2:

Prostaglandin endoperoxide synthase 2

GEPIA:

Gene expression profiling interactive analysis

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide

Co-IP:

Coimmunoprecipitation

ChIP:

Chromatin immunoprecipitation

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men. Nat Rev Urol. 2021;18:282–301.

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Xu C, Lee HJ, et al. A genomic and epigenomic Atlas of prostate cancer in Asian populations. Nature. 2020;580:93–9.

    Article  CAS  PubMed  Google Scholar 

  4. Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol. 2020;77:38–52.

    Article  PubMed  Google Scholar 

  5. Lui JW, Moore SPG, Huang L, Ogomori K, Li Y, Lang D. YAP facilitates melanoma migration through regulation of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment Cell Melanoma Res. 2022;35:52–65.

    Article  CAS  PubMed  Google Scholar 

  6. Rauhala HE, Teppo S, Niemela S, Kallioniemi A. Silencing of the ARP2/3 complex disturbs pancreatic cancer cell migration. Anticancer Res. 2013;33:45–52.

    CAS  PubMed  Google Scholar 

  7. Zhang J, Liu Y, Yu CJ, et al. Role of ARPC2 in human gastric cancer. Mediators Inflamm. 2017;2017:5432818.

    PubMed  PubMed Central  Google Scholar 

  8. Su X, Wang S, Huo Y, Yang C. Short interfering RNA-mediated silencing of actin-related protein 2/3 complex subunit 4 inhibits the migration of SW620 human colorectal cancer cells. Oncol Lett. 2018;15:2847–54.

    PubMed  Google Scholar 

  9. Chen P, Yue X, Xiong H, Lu X, Ji Z. RBM3 upregulates ARPC2 by binding the 3′UTR and contributes to breast cancer progression. Int J Oncol. 2019;54:1387–97.

    CAS  PubMed  Google Scholar 

  10. Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer. 2009;48:330–9.

    Article  CAS  PubMed  Google Scholar 

  11. Huang S, Li D, Zhuang L, Sun L, Wu J. Identification of Arp2/3 complex subunits as prognostic biomarkers for hepatocellular carcinoma. Front Mol Biosci. 2021;8: 690151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu N, Chen SH, Lin TT, et al. Development and validation of hub genes for lymph node metastasis in patients with prostate cancer. J Cell Mol Med. 2020;24:4402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Su Y, Zhao B, Zhou L, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020;483:127–36.

    Article  CAS  PubMed  Google Scholar 

  14. Hassannia B, Vandenabeele P, Vanden BT. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35:830–49.

    Article  CAS  PubMed  Google Scholar 

  15. Friedmann Angeli JP, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 2019;19:405–14.

    Article  CAS  PubMed  Google Scholar 

  16. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16: e2006203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ke ZB, You Q, Sun JB, et al. A novel ferroptosis-based molecular signature associated with biochemical recurrence-free survival and tumor immune microenvironment of prostate cancer. Front Cell Dev Biol. 2021;9: 774625.

    Article  PubMed  Google Scholar 

  19. Xu P, Wang Y, Deng Z, Tan Z, Pei X. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol Lett. 2022;23:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaffaroni N, Beretta GL. Ferroptosis inducers for prostate cancer therapy. Curr Med Chem. 2022. https://doi.org/10.2174/0929867329666220111120924.

    Article  PubMed  Google Scholar 

  21. Zhao R, Lv Y, Feng T, et al. ATF6alpha promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 2022;82:617–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siersbaek R, Scabia V, Nagarajan S, et al. IL6/STAT3 signaling hijacks estrogen receptor alpha enhancers to drive breast cancer metastasis. Cancer Cell. 2020;38(412–23): e9.

    Google Scholar 

  24. Heichler C, Scheibe K, Schmied A, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020;69:1269–82.

    Article  CAS  PubMed  Google Scholar 

  25. Yang H, Xu W. STAT3 promotes peritoneal metastasis of gastric cancer by enhancing mesothelial-mesenchymal transition. Biol Chem. 2021;402:739–48.

    Article  CAS  PubMed  Google Scholar 

  26. Schroeder A, Herrmann A, Cherryholmes G, et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 2014;74:1227–37.

    Article  CAS  PubMed  Google Scholar 

  27. Kroon P, Berry PA, Stower MJ, et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res. 2013;73:5288–98.

    Article  CAS  PubMed  Google Scholar 

  28. Don-Doncow N, Marginean F, Coleman I, et al. Expression of STAT3 in prostate cancer metastases. Eur Urol. 2017;71:313–6.

    Article  CAS  PubMed  Google Scholar 

  29. McIntosh C, Conroy L, Tjong MC, et al. Clinical integration of machine learning for curative-intent radiation treatment of patients with prostate cancer. Nat Med. 2021;27:999–1005.

    Article  CAS  PubMed  Google Scholar 

  30. Urabe F, Miki K, Kimura T, et al. Clinical significance of unfavorable findings in intermediate-risk prostate cancer patients for predicting treatment outcomes after contemporary, dose-escalated multimodal radiotherapy. Prostate. 2022;82:433–41.

    Article  CAS  PubMed  Google Scholar 

  31. Mizuno K, Sumiyoshi T, Okegawa T, et al. Clinical impact of detecting low-frequency variants in cell-free DNA on treatment of castration-resistant prostate cancer. Clin Cancer Res. 2021;27:6164–73.

    Article  CAS  PubMed  Google Scholar 

  32. Sartor O, Appukkuttan S, Weiss J, Tsao CK. Clinical outcomes, management, and treatment patterns in patients with metastatic castration-resistant prostate cancer treated with radium-223 in community compared to academic settings. Prostate. 2021;81:657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tesfay L, Clausen KA, Kim JW, et al. Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75:2254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu ZH, Tang Y, Yu H, Li HD. The role of ferroptosis in breast cancer patients: a comprehensive analysis. Cell Death Discov. 2021;7:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang J, Zhou Y, Xie S, et al. Metformin induces ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40:206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu Y, Qin H, Jiang B, et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 2021;522:1–13.

    Article  CAS  PubMed  Google Scholar 

  37. Gu Z, Wang H, Xia J, et al. Decreased ferroportin promotes myeloma cell growth and osteoclast differentiation. Cancer Res. 2015;75:2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021;12:836–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li HL, Deng NH, Xiao JX, He XS. Cross-link between ferroptosis and nasopharyngeal carcinoma: new approach to radiotherapy sensitization. Oncol Lett. 2021;22:770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. 2018;50:445–60.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 2020;19:323–33.

    CAS  PubMed  Google Scholar 

  42. Ghoochani A, Hsu EC, Aslan M, et al. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res. 2021;81:1583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Yuanjie Niu for his guidance and assistance in certain experiments.

Funding

This work was supported by the Nankai University Young Teachers Research Start-up Project (5e9eac077be828a2017c81d74e873ed9, to Dr. Shen).

Author information

Authors and Affiliations

Authors

Contributions

TS and JJ designed the experiments. JJ and BY performed the cell biology experiments molecular biology experiments. HL performed the animal experiments and participated in the sequence alignment. WW and BY performed the statistical analysis. TS and JJ analyzed the data and wrote the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianyu Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The clinical experimental protocols were approved by the Ethics Committee of The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology Medical. The clinical trial ethics approval number is No. 20220301. Written informed consent was obtained from all patients. The study was conducted in accordance with the Declaration of Helsinki. The animal experimental protocols were approved by the Ethics Committee of The Third Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology Medical. The animal experiment ethics approval number is No. 20220302.

Consent for publication

All authors agree on publication of the results of the present manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Li, H., Wang, W. et al. ARPC1A is regulated by STAT3 to inhibit ferroptosis and promote prostate cancer progression. Human Cell 35, 1591–1601 (2022). https://doi.org/10.1007/s13577-022-00754-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00754-w

Keywords

Navigation