Skip to main content

Advertisement

Log in

Adipose stromal vascular fraction: a promising treatment for severe burn injury

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Thermal skin burn injury affects both adults and children globally. Severe burn injury affects a patient’s life psychologically, cosmetically, and socially. The pathophysiology of burn injury is well known. Due to the complexity of burn pathophysiology, the development of specific treatment aiding in tissue regeneration is required. Treatment of burn injury depends on burn severity, size of the burn and availability of donor site. Burn healing requires biochemical and cellular events to ensure better cell response to biochemical signals of the healing process. This led to the consideration of using cell therapy for severe burn injury. Adult mesenchymal stem cells have become a therapeutic option because of their ability for self-renewal and differentiation. Adipose stromal vascular fraction (SVF), isolated from adipose tissues, is a heterogeneous cell population that contains adipose-derived stromal/stem cells (ADSC), stromal, endothelial, hematopoietic and pericytic lineages. SVF isolation has advantages over other types of cells; such as heterogeneity of cells, lower invasive extraction procedure, high yield of cells, and fast and easy isolation. Therefore, SVF has many characteristics that enable them to be a therapeutic option for burn treatment. Studies have been conducted mostly in animal models to investigate their therapeutic potential for burn injury. They can be used alone or in combination with other treatment options. Treatment with both ADSCs and/or SVF enhances burn healing through increasing re-epithelization, angiogenesis and decreasing inflammation and scar formation. Research needs to be conducted for a better understanding of the SVF mechanism in burn healing and to optimize current techniques for enhanced treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abbas OL, Özatik O, Gönen ZB, Öğüt S, Özatik FY, Salkın H, Musmul A. Comparative analysis of mesenchymal stem cells from bone marrow, adipose tissue, and dental pulp as sources of cell therapy for zone of stasis burns. J Invest Surg. 2019. https://doi.org/10.1080/08941939.2018.1433254.

    Article  PubMed  Google Scholar 

  2. Alexaki VI, Simantiraki D, Panayiotopoulou M, Rasouli O, Venihaki M, Castana O, Alexakis D, Kampa M, Stathopoulos EN, Castanas E. Adipose tissue-derived mesenchymal cells support skin reepithelialization through secretion of KGF-1 and PDGF-BB: comparison with dermal fibroblasts. Cell Transplant. 2012;21(11):2441–54. https://doi.org/10.3727/096368912X637064.

    Article  PubMed  Google Scholar 

  3. American Burn Association. Burn Incidence and Treatment in the United States: 2016. Burn Incidence Fact Sheet. 2016.

  4. Anthonissen M, Daly D, Janssens T, Van Den Kerckhove E. The effects of conservative treatments on burn scars: a systematic review. Burns. 2016;42(3):508–18. https://doi.org/10.1016/j.burns.2015.12.006.

    Article  PubMed  Google Scholar 

  5. Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014;40(7):1375–83. https://doi.org/10.1016/j.burns.2014.01.023.

    Article  PubMed  Google Scholar 

  6. Bertrand B, Eraud J, Velier M, Cauvin C, Macagno N, Boucekine M, Philandrianos C, Casanova D, Magalon J, Saatier F. Supportive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer of skin radiation-induced lesions in nude mice. Burns. 2020;46(7):1641–52.

    Article  Google Scholar 

  7. Bi H, Li H, Zhang C, Mao Y, Nie F, Xing Y, Sha W, Wang X, Irwin DM, Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther. 2019;10(1):1–22. https://doi.org/10.1186/s13287-019-1415-6.

    Article  CAS  Google Scholar 

  8. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy. 2013. https://doi.org/10.1016/j.jcyt.2013.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burn incidence fact sheet. 2016. American Burn Association. https://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/

  10. Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, Oyama Y, Russell EJ, Stern J, Muraro P, Rose J, Testori A, Bucha J, Jovanovic B, Milanetti F, Storek J, Voltarelli JC, Burns WH. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009, 8(3), pp. 244–53. https://doi.org/10.1016/S1474-4422(09)70017-1. [Erratum. In: Lancet Neurol. 2009;8(4):309].

  11. Bush K, Gertzman AA. Process development and manufacturing of human and animal acellular dermal matrices. Skin Tissue Eng Regen Medi. 2016. https://doi.org/10.1016/B978-0-12-801654-1.00005-X.

    Article  Google Scholar 

  12. Butts CC, Bose K, Frotan MA, Hodge J, Gulati S. Controlling intraoperative hemorrhage during burn surgery: a prospective, randomized trial comparing NuStat® hemostatic dressing to the historic standard of care. Burns. 2017. https://doi.org/10.1016/j.burns.2016.08.026.

    Article  PubMed  Google Scholar 

  13. Cardoso AL, Bachion MM, de Morais JM, Fantinati MS, De Almeida VLL, Lino Júnior RS. Adipose tissue stromal vascular fraction in the treatment of full thickness burns in rats. Acta Cirurgica Brasileira. 2016;31(9):578–85. https://doi.org/10.1590/S0102-865020160090000002.

    Article  PubMed  Google Scholar 

  14. Cervelli V, Gentile P, Scioli MG, Grimaldi M, Casciani CU, Spagnoli LG, Orlandi A. Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods. 2009;15(4):625–34. https://doi.org/10.1089/ten.TEC.2008.0518.

    Article  CAS  PubMed  Google Scholar 

  15. Chae D-S, Han S, Son M, Kim S-W. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property. Cytotherapy. 2017;19(4):543–54. https://doi.org/10.1016/j.jcyt.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  16. Chan RK, Zamora DO, Wrice NL, Baer DG, Renz EM, Christy RJ, Natesan S. Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cells Int. 2012;2012: 841203. https://doi.org/10.1155/2012/841203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang YW, Wu YC, Huang SH, Wang HMD, Kuo YR, Lee SS. Autologous and not allogeneic adipose-derived stem cells improve acute burn wound healing. PLoS ONE. 2018;13(5):1–16. https://doi.org/10.1371/journal.pone.0197744.

    Article  CAS  Google Scholar 

  18. Chen YW, Scutaru TT, Ghetu N, Carasevici E, Lupascu CD, Ferariu D, Pieptu D, Coman CG, Danciu M. The effects of adipose-derived stem cell-differentiated adipocytes on skin burn wound healing in rats. J Burn Care Res. 2017;38(1):1–10. https://doi.org/10.1097/BCR.0000000000000466.

    Article  PubMed  Google Scholar 

  19. Cheng C, Sheng L, Li H, Mao X, Zhu M, Gao B, Li Q. Cell-assisted skin grafting: improving texture and elasticity of skin grafts through autologous cell transplantation. Plast Reconstr Surg. 2016;137(1):58e–66e. https://doi.org/10.1097/PRS.0000000000001949.

    Article  CAS  PubMed  Google Scholar 

  20. Choudhry MA, Chaudry IH. Alcohol intoxication and post-burn complications. Front Biosci. 2006. https://doi.org/10.2741/1857.

    Article  PubMed  Google Scholar 

  21. Chung E, Rybalko VY, Hsieh P-L, Leal SL, Samano MA, Willauer AN, Stowers RS, Natesan S, Zamora DO, Christy RJ, Suggs LJ. Fibrin-based stem cell containing scaffold improves the dynamics of burn wound healing. Wound Repair Regen. 2016;24(5):810–9. https://doi.org/10.1111/wrr.12459.

    Article  PubMed  Google Scholar 

  22. Cirodde A, Leclerc T, Jault P, Duhamel P, Lataillade JJ, Bargues L. Cultured epithelial autografts in massive burns: a single-center retrospective study with 63 patients. Burns. 2011;37(6):964–72. https://doi.org/10.1016/j.burns.2011.03.011.

    Article  PubMed  Google Scholar 

  23. Clover AJP, Lane O’Neill B, Kumar AHS. Patient’s attitudes to progenitor cell therapy. Wound Repair Regen. 2012;20(3):311–6. https://doi.org/10.1111/j.1524-475X.2012.00779.x.

    Article  PubMed  Google Scholar 

  24. Copcu H, Oztan S. New mechanical fat separation technique: ARAT and MEST. Aesthet Surg J Open Forum. 2020. https://doi.org/10.1093/asjof/ojaa035.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Copcu HE, Oztan S. Not stromal vascular fraction (SVF) or nanofat, but total stromal-cells (TOST): a new definition systemic review of mechanical stromal-cell extraction techniques. Tissue Eng Regen Med. 2021;18(1):25–36. https://doi.org/10.1007/s13770-020-00313-0.

    Article  PubMed  Google Scholar 

  26. de Chaves MEA, de Araújo AR, Piancastelli ACC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89(4):616–23. https://doi.org/10.1590/abd1806-4841.20142519.

    Article  PubMed  PubMed Central  Google Scholar 

  27. de Sousa APC, de Aguiar Valença Neto AAP, Marchionni AMT, de Araújo Ramos M, dos Reis Júnior JA, Pereira MCMC, Cangussú MCT, de Almeida Reis SR, Pinheiro ALB. Effect of LED phototherapy (λ700 ± 20 nm) on TGF-β expression during wound healing: an immunohistochemical study in a rodent model. Photomed Laser Surg. 2011;29(9):605–11. https://doi.org/10.1089/pho.2010.2833.

    Article  CAS  PubMed  Google Scholar 

  28. Doi K, Tanaka S, Iida H, Eto H, Kato H, Aoi N, Kuno S, Hirohi T, Yoshimura K. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med. 2013;7(11):864–70. https://doi.org/10.1002/term.1478.

    Article  CAS  PubMed  Google Scholar 

  29. Domergue S, Bony C, Maumus M, Toupet K, Frouin E, Rigau V, Vozenin MC, Magalon G, Jorgensen C, Noël D. Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars. PLoS ONE. 2016;11(5):1–16. https://doi.org/10.1371/journal.pone.0156161.

    Article  CAS  Google Scholar 

  30. Dong Y, Cui M, Qu J, Wang X, Kwon SH, Barrera J, Elvassore N, Gurtner GC. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater. 2020;108:56–66. https://doi.org/10.1016/j.actbio.2020.03.040.

    Article  CAS  PubMed  Google Scholar 

  31. Dos-Anjos Vilaboa S, Navarro-Palou M, Llull R. Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates. Cytotherapy. 2014;16(8):1092–7. https://doi.org/10.1016/j.jcyt.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

  32. Ennis WJ, Sui A, Bartholomew A. Stem cells and healing: impact on inflammation. Adv Wound Care. 2013;2(7):369–78. https://doi.org/10.1089/wound.2013.0449.

    Article  Google Scholar 

  33. Evers LH, Bhavsar D, Mailänder P. The biology of burn injury. Exp Dermatol. 2010;19(9):777–83. https://doi.org/10.1111/j.1600-0625.2010.01105.x.

    Article  PubMed  Google Scholar 

  34. Eyuboglu AA, Uysal CA, Ozgun G, Coskun E, Markal Ertas N, Haberal M. The effect of adipose derived stromal vascular fraction on stasis zone in an experimental burn model. Burns. 2018;44(2):386–96. https://doi.org/10.1016/j.burns.2017.08.016.

    Article  PubMed  Google Scholar 

  35. Feng C-J, Lin C-H, Tsai C-H, Yang I-C, Ma H. Adipose-derived stem cells-induced burn wound healing and regeneration of skin appendages in a novel skin island rat model. J Chin Med Assoc: JCMA. 2019;82(8):635–42. https://doi.org/10.1097/JCMA.0000000000000134.

    Article  PubMed  Google Scholar 

  36. Foubert P, Barillas S, Gonzalez AD, Alfonso Z, Zhao S, Hakim I, Meschter C, Tenenhaus M, Fraser JK. Uncultured adipose-derived regenerative cells (ADRCs) seeded in collagen scaffold improves dermal regeneration, enhancing early vascularization and structural organization following thermal burns. Burns. 2015;41(7):1504–16. https://doi.org/10.1016/j.burns.2015.05.004.

    Article  PubMed  Google Scholar 

  37. Foubert P, Liu M, Anderson S, Rajoria R, Gutierrez D, Zafra D, Tenenhaus M, Fraser JK. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns. 2018;44(6):1531–42. https://doi.org/10.1016/j.burns.2018.05.006.

    Article  PubMed  Google Scholar 

  38. Franck CL, Senegaglia AC, Leite LMB, De Moura SAB, Francisco NF, Ribas Filho JM. Influence of adipose tissue-derived stem cells on the burn wound healing process. Stem Cells Int. 2019. https://doi.org/10.1155/2019/2340725.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fujiwara O, Prasai A, Perez-Bello D, El Ayadi A, Petrov IY, Esenaliev RO, Petrov Y, Herndon DN, Finnerty CC, Prough DS, Enkhbaatar P. Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow. Burns Trauma. 2020;8:tkaa009. https://doi.org/10.1093/burnst/tkaa009.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gentile P, Garcovich S. Systematic review-the potential implications of different platelet-rich plasma (PRP) concentrations in regenerative medicine for tissue repair. Int J Mol Sci. 2020;21(16):5702. https://doi.org/10.3390/ijms21165702.

    Article  CAS  PubMed Central  Google Scholar 

  41. Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M, Di Pasquali C, Bocchini I, Balzani A, Nicoli F, Insalaco C, Tati E, Lucarini L, Palla L, Pascali M, De Logu P, Di Segni C, Bottini DJ, Cervelli V. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg. 2014;25(1):267–72. https://doi.org/10.1097/01.scs.0000436746.21031.ba.

    Article  PubMed  Google Scholar 

  42. Giudice G, Filoni A, Maggio G, et al. Use of the stromal vascular fraction in intermediate-deep acute burns: a case with its own control. J Burn Care Res. 2018;39(5):846–9.

    Article  Google Scholar 

  43. Grasys J, Kim B-S, Pallua N. Content of soluble factors and characteristics of stromal vascular fraction cells in lipoaspirates from different subcutaneous adipose tissue depots. Aesthet Surg J. 2016;36(7):831–41. https://doi.org/10.1093/asj/sjw022.

    Article  PubMed  Google Scholar 

  44. Han Y, Bai Y, Yan X-L, Ren J, Zeng Q, Li X-D, Pei X-T, Han Y. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun. 2018;497(1):305–12. https://doi.org/10.1016/j.bbrc.2018.02.076.

    Article  CAS  PubMed  Google Scholar 

  45. He L, Zhu C, Jia J, Hao X-Y, Yu X-Y, Liu X-Y, Shu M-G. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. 2020. Biosci Rep. https://doi.org/10.1042/BSR20192549.

  46. Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med. 2006;1(6):809–21. https://doi.org/10.2217/17460751.1.6.809.

    Article  PubMed  Google Scholar 

  47. Hettiaratchy S, Dziewulski P. Pathophysiology and types of burns. BMJ. 2004;328(7453):1427. https://doi.org/10.1136/bmj.328.7453.1427.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jackson DM (1953) The diagnosis of the depth of burning. Br J Surg 40:588–596

    Article  CAS  Google Scholar 

  49. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, Suman OE, Mlcak RP, Herndon DN. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0021245.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jewo PI, Fadeyibi IO. Progress in burns research: a review of advances in burn pathophysiology. Ann Burns Fire Disasters 2015;28(2):105–115. http://www.ncbi.nlm.nih.gov/pubmed/27252608%0A. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4837486

  51. Jia W, Hu D, Wang H, Chen D, Bai X, Li N, Han F, Fang X, Yang L. Effects of mouse adipose-derived stem cell conditioned medium on the apoptosis of keratinocytes induced by thermal injury in vitro. Chin J Burns. 2014. https://doi.org/10.3760/cma.j.issn.1009-2587.2014.02.003.

    Article  Google Scholar 

  52. Josh F, Soekamto TH, Adriani JR, Jonatan B, Mizuno H, Faruk M. The combination of stromal vascular fraction cells and platelet-rich plasma reduces malondialdehyde and nitric oxide levels in deep dermal burn injury. J Inflamm Res. 2021;14(June):3049–61. https://doi.org/10.2147/JIR.S318055.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Karakol P, Bozkurt M, Gelbal C, Tuglu MI. Efficacy of stromal vascular fraction and enzyme-free mechanical isolation therapy in experimental full thickness burn wounds. J Plast Surg Hand Surg. 2021. https://doi.org/10.1080/2000656X.2021.1993234.

    Article  PubMed  Google Scholar 

  54. Karina, Samudra MF, Rosadi I, Afini I, Widyastuti T, Sobariah S, Remelia M, Puspitasari RL, Rosliana I, Tunggadewi TI. Combination of the stromal vascular fraction and platelet-rich plasma accelerates the wound healing process: pre-clinical study in a Sprague-Dawley rat model. Stem Cell Investig. 2019;6:1–8. https://doi.org/10.21037/sci.2019.06.08.

    Article  CAS  Google Scholar 

  55. Kaushik P, Sharma S, Rana A, Kaushik D, Kamboj S. Burn wound: Pathophysiology and its management by herbal plants. Chron Young Sci. 2013;4(2):86. https://doi.org/10.4103/2229-5186.115537.

    Article  CAS  Google Scholar 

  56. Khan I, Rahman SU, Tang E, Engel K, Hall B, Kulkarni AB, Arany PR. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1. Sci Rep. 2021;11(1):13371. https://doi.org/10.1038/s41598-021-92650-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Klar AS, Zimoch J, Biedermann T. Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int. 2017;2017:9747010. https://doi.org/10.1155/2017/9747010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klinger M, Marazzi M, Vigo D, Torre M. Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction. Aesthet Plast Surg. 2020;44(4):1278–82. https://doi.org/10.1007/s00266-020-01813-z.

    Article  CAS  Google Scholar 

  59. Laidding SR, Josh F, Battung S, Bukhari A, Warsinggih, Patellongi IJ, Massi MN, Islam AA, Dososaputro I, Faruk M. Combination of platelet rich plasma and stromal vascular fraction on the level of vascular endothelial growth factor in rat subjects experiencing deep dermal burn injury. Ann Med Surg. 2012;64:102254. https://doi.org/10.1016/j.amsu.2021.102254.

    Article  Google Scholar 

  60. Laidding SR, Josh F, Francisca, Faruk M, Palissei AS, Satria B, Warsinggih, Bukhari A, Massi MN, Islam AA. Combination of platelet-rich plasma and stromal vascular fraction on the level of transforming growth factor-β in rat subjects experiencing deep dermal burn injury. Ann Med Surg. 2020;60(November):737–42. https://doi.org/10.1016/j.amsu.2020.11.088.

    Article  Google Scholar 

  61. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0047559.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lamaro-Cardoso A, Bachion MM, Morais JM, Fantinati MS, Milhomem AC, Almeida VL, Vinaud MC, Lino-Júnior RS. Photobiomodulation associated to cellular therapy improve wound healing of experimental full thickness burn wounds in rats. J Photochem Photobiol B Biol. 2019;194:174–82. https://doi.org/10.1016/j.jphotobiol.2019.04.003.

    Article  CAS  Google Scholar 

  63. Langton AK, Herrick SE, Headon DJ. An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution. J Investig Dermatol. 2008;128(5):1311–8. https://doi.org/10.1038/sj.jid.5701178.

    Article  CAS  PubMed  Google Scholar 

  64. Leonardi D, Oberdoerfer D, Fernandes MC, Meurer RT, Pereira-Filho GA, Cruz P, Vargas M, Chem RC, Camassola M, Nardi NB. Mesenchymal stem cells combined with an artificial dermal substitute improve repair in full-thickness skin wounds. Burns. 2012;38(8):1143–50. https://doi.org/10.1016/j.burns.2012.07.028.

    Article  PubMed  Google Scholar 

  65. Loder S, Peterson JR, Agarwal S, Eboda O, Brownley C, Delarosa S, Ranganathan K, Cederna P, Wang SC, Levi B. Wound healing after thermal injury is improved by fat and adipose-derived stem cell isografts. J Burn Care Res. 2015. https://doi.org/10.1097/BCR.0000000000000160.

    Article  PubMed  Google Scholar 

  66. Lu T-Y, Yu K-F, Kuo S-H, Cheng N-C, Chuang E-Y, Yu J-S. Enzyme-crosslinked gelatin hydrogel with adipose-derived stem cell spheroid facilitating wound repair in the murine burn model. Polymers. 2020;12(12):2997. https://doi.org/10.3390/polym12122997.

    Article  CAS  PubMed Central  Google Scholar 

  67. Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem. 2019;120(6):10847–54. https://doi.org/10.1002/jcb.28376.

    Article  CAS  PubMed  Google Scholar 

  68. Maass DL, Hybki DP, White J, Horton JW. The time course of cardiac Nf-κB activation and TNF-α secretion by cardiac myocytes after burn injury: Contribution to burn-related cardiac contractile dysfunction. Shock. 2002;17(4):293–9. https://doi.org/10.1097/00024382-200204000-00009.

    Article  PubMed  Google Scholar 

  69. Machula H, Ensley B, Kellar R. Electrospun tropoelastin for delivery of therapeutic adipose-derived stem cells to full-thickness dermal wounds. Adv Wound Care. 2014;3(5):367–75. https://doi.org/10.1089/wound.2013.0513.

    Article  Google Scholar 

  70. Mahmood R, Mehmood A, Choudhery MS, Awan SJ, Khan SN, Riazuddin S. Human neonatal stem cell-derived skin substitute improves healing of severe burn wounds in a rat model. Cell Biol Int. 2019;43(2):147–57. https://doi.org/10.1002/cbin.11072.

    Article  CAS  PubMed  Google Scholar 

  71. Mansoub NH, Gürdal M, Karadadas E, Kabadayi H, Vatansever S, Ercan G. The role of PRP and adipose tissue-derived keratinocytes on burn wound healing in diabetic rats. BioImpacts. 2018;8(1):5–12. https://doi.org/10.15171/bi.2018.02.

    Article  CAS  Google Scholar 

  72. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12(12):3375–82. https://doi.org/10.1089/ten.2006.12.3375.

    Article  CAS  PubMed  Google Scholar 

  73. Mazini L, Rochette L, Hamdan Y, Malka G. Skin immunomodulation during regeneration: emerging new targets. J Pers Med. 2021;11(2):85. https://doi.org/10.3390/jpm11020085.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Monfort A, Soriano-Navarro M, García-Verdugo JM, Izeta A. Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. J Tissue Eng Regen Med. 2013;7(6):479–90. https://doi.org/10.1002/term.548.

    Article  CAS  PubMed  Google Scholar 

  75. Natesan S, Wrice NL, Baer DG, Christy RJ. Debrided skin as a source of autologous stem cells for wound repair. Stem Cells. 2011;29(8):1219–30. https://doi.org/10.1002/stem.677.

    Article  CAS  PubMed  Google Scholar 

  76. Natesan S, Zamora DO, Wrice NL, Baer DG, Christy RJ. Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration. J Burn Care Res. 2013;34(1):18–30. https://doi.org/10.1097/BCR.0b013e3182642c0e.

    Article  PubMed  Google Scholar 

  77. Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J. Locally administered Adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011;20(2):205–16. https://doi.org/10.3727/096368910X520065.

    Article  PubMed  Google Scholar 

  78. Nielson CB, Duethman NC, Howard JM, Moncure M, Wood JG. Burns: pathophysiology of systemic complications and current management. J Burn Care Res. 2017;38(1):e469–81. https://doi.org/10.1097/BCR.0000000000000355.

    Article  PubMed  Google Scholar 

  79. Nishiwaki K, Aoki S, Kinoshita M, Kiyosawa T, Suematsu Y, Takeoka S, Fujie T. In situ transplantation of adipose tissue-derived stem cells organized on porous polymer nanosheets for murine skin defects. J Biomed Mater Res B Appl Biomater. 2019;107(5):1363–71. https://doi.org/10.1002/jbm.b.34228.

    Article  CAS  PubMed  Google Scholar 

  80. Nowak TJ. Burn pathophysiology. Perioper Nurs Clin. 2012;7(1):9–17. https://doi.org/10.1016/j.cpen.2011.10.003.

    Article  Google Scholar 

  81. Onur Erol O, Agaoglu G, Jawad MA. Combined non-ablative laser and microfat grafting for burn scar treatment. Aesthet Surg J. 2019;39(4):NP55–67. https://doi.org/10.1093/asj/sjy291.

    Article  CAS  PubMed  Google Scholar 

  82. Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability. 2016. https://doi.org/10.1016/j.jtv.2015.12.002.

    Article  PubMed  Google Scholar 

  83. Prasai A, El Ayadi A, Mifflin RC, Wetzel MD, Andersen CR, Redl H, Herndon DN, Finnerty CC. Characterization of adipose-derived stem cells following burn injury. Stem Cell Rev Rep. 2017;13(6):781–92. https://doi.org/10.1007/s12015-017-9721-9.

    Article  CAS  PubMed  Google Scholar 

  84. Priglinger E, Maier J, Chaudary S, Lindner C, Wurzer C, Rieger S, Redl H, Wolbank S, Dungel P. Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med. 2018;12(6):1352–62. https://doi.org/10.1002/term.2665.

    Article  CAS  PubMed  Google Scholar 

  85. Qian L, Pi L, Fang B-R, Meng X-X. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis. Lab Invest. 2021;101(9):1254–66. https://doi.org/10.1038/s41374-021-00611-8.

    Article  CAS  PubMed  Google Scholar 

  86. Rae L, Fidler P, Gibran N. The physiologic basis of burn shock and the need for aggressive fluid resuscitation. Crit Care Clin. 2016;32(4):491–505. https://doi.org/10.1016/j.ccc.2016.06.001.

    Article  PubMed  Google Scholar 

  87. Räntfors J, Cassuto J. Role of histamine receptors in the regulation of edema and circulation postburn. Burns. 2003;29(8):769–77. https://doi.org/10.1016/S0305-4179(03)00203-1.

    Article  PubMed  Google Scholar 

  88. Raposio E, Simonacci F, Perrotta RE. Adipose-derived stem cells: Comparison between two methods of isolation for clinical applications. Ann Med Surg. 2017;2012(20):87–91. https://doi.org/10.1016/j.amsu.2017.07.018.

    Article  Google Scholar 

  89. Rasmussen BS, Sørensen CL, Vester-Glowinski PV, Herly M, Kurbegovic S, Ørholt M, Svalgaard JD, Kølle S-FT, Kristensen AT, Talman M-LM, Drzewiecki KT, Fischer-Nielsen A. A novel porcine model for future studies of cell-enriched fat grafting. Plast Reconstr Surg Glob Open. 2018;6(4): e1735. https://doi.org/10.1097/GOX.0000000000001735.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sazegar G, Hosseini SRA, Behravan E. The effects of supplemental zinc and honey on wound healing in rats. Iran J Basic Med Sci. 2011. https://doi.org/10.22038/ijbms.2011.5029.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019;10(1):1–16. https://doi.org/10.1186/s13287-019-1203-3.

    Article  CAS  Google Scholar 

  92. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, Soker S. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802. https://doi.org/10.5966/sctm.2012-0088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stachura A, Paskal W, Pawlik W, Mazurek MJ, Jaworowski J. The use of adipose-derived stem cells (ADSCs) and stromal vascular fraction (SVF) in skin scar treatment-a systematic review of clinical studies. J Clin Med. 2021;10(16):3637. https://doi.org/10.3390/jcm10163637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stekelenburg CM, Simons JM, Tuinebreijer WE, van Zuijlen PPM. Analyzing contraction of full thickness skin grafts in time: choosing the donor site does matter. Burns. 2016. https://doi.org/10.1016/j.burns.2016.02.001.

    Article  PubMed  Google Scholar 

  95. Stone R, Natesan S, Kowalczewski CJ, Mangum LH, Clay NE, Clohessy RM, Carlsson AH, Tassin DH, Chan RK, Rizzo JA, Christy RJ. Advancements in regenerative strategies through the continuum of burn care. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00672.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sultan SM, Barr JS, Butala P, Davidson EH, Weinstein AL, Knobel D, Saadeh PB, Warren SM, Coleman SR, Hazen A. Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury. J Plast Reconstr Aesthet Surg. 2012;65(2):219–27. https://doi.org/10.1016/j.bjps.2011.08.046.

    Article  PubMed  Google Scholar 

  97. Sun M, He Y, Zhou T, Zhang P, Gao J, Lu F. Adipose extracellular matrix/stromal vascular fraction gel secretes angiogenic factors and enhances skin wound healing in a murine model. Biomed Res Int. 2017. https://doi.org/10.1155/2017/3105780.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013;132(4):1017–26. https://doi.org/10.1097/PRS.0b013e31829fe1b0.

    Article  CAS  PubMed  Google Scholar 

  99. Trivisonno A, Alexander RW, Baldari S, Cohen SR, Di Rocco G, Gentile P, Magalon G, Magalon J, Miller RB, Womack H, Toietta G. Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell- and tissue-based therapies: concise review. Stem Cells Transl Med. 2019;8(12):1265–71. https://doi.org/10.1002/sctm.19-0166.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26(10):2713–23. https://doi.org/10.1634/stemcells.2008-0031.

    Article  PubMed  Google Scholar 

  101. van der Veen VC, Vlig M, van Milligen FJ, de Vries SI, Middelkoop E, Ulrich MMW. Stem cells in burn eschar. Cell Transplant. 2012;21(5):933–42. https://doi.org/10.3727/096368911X600993.

    Article  PubMed  Google Scholar 

  102. Vaughn L, Beckel N. Severe burn injury, burn shock, and smoke inhalation injury in small animals. Part 1: Burn classification and pathophysiology. J Vet Emerg Crit Care. 2012;22(2):179–86. https://doi.org/10.1111/j.1476-4431.2012.00727.x.

    Article  Google Scholar 

  103. Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32(4):395–401. https://doi.org/10.1016/j.burns.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  104. Wurzer P, Keil H, Branski LK, Parvizi D, Clayton RP, Finnerty CC, Herndon DN, Kamolz LP. The use of skin substitutes and burn care—a survey. J Surg Res. 2016;201(2):293–8. https://doi.org/10.1016/j.jss.2015.10.048.

    Article  PubMed  Google Scholar 

  105. Yanaga H, Udoh Y, Yamauchi T, Yamamoto M, Kiyokawa K, Inoue Y, Tai Y. Cryopreserved cultured epidermal allografts achieved early closure of wounds and reduced scar formation in deep partial-thickness burn wounds (DDB) and split-thickness skin donor sites of pediatric patients. Burns. 2001;27(7):689–98. https://doi.org/10.1016/S0305-4179(01)00008-0.

    Article  CAS  PubMed  Google Scholar 

  106. Yastı AÇ, Akgün AE, Akın M. Use of stromal vascular fraction stem cell therapy for functional and cosmetic outcomes in a young female patient with deep dermal flame burns on the face. Burns Open. 2022;6(3):116–9. https://doi.org/10.1016/j.burnso.2022.03.005.

    Article  Google Scholar 

  107. Zahorec P, Sarkozyova N, Ferancikova N, Bukovcan P, Danisovic L, Bohac M, Tomas M, Koller J. Autologous mesenchymal stem cells application in post-burn scars treatment: a preliminary study. Cell Tissue Banking. 2021;22(1):39–46. https://doi.org/10.1007/s10561-020-09862-z.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z, Wang X, Luo L, Han F, Zhang J, Han S, Cai W, Su L, Tao K, Shi J, Hu D. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018;370(2):333–42. https://doi.org/10.1016/j.yexcr.2018.06.035.

    Article  CAS  PubMed  Google Scholar 

  109. Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, Gao Z, Xu J. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev. 2019;28(21):1463–72. https://doi.org/10.1089/scd.2019.0113.

    Article  CAS  PubMed  Google Scholar 

  110. Zuo KJ, Medina A, Tredget EE. Important developments in burn care. Plast Reconstr Surg. 2017. https://doi.org/10.1097/PRS.0000000000002908.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the contributions of University of Jeddah.

Author information

Authors and Affiliations

Authors

Contributions

Severe burn is a global incidental injury. The mechanism behind it is well-known. However, treatment options need to be developed for better results. This review presented the advantages and disadvantages of available treatments. Recently, SVF has been used clinically as a therapeutic option for severe burn injury showing promising results in both human and animal models. However, the mechanism behind its effect still needs to be discovered.

Corresponding author

Correspondence to Khloud Fakiha.

Ethics declarations

Conflict of interest

The author declare that they have no competing interests of any commercial or financial relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakiha, K. Adipose stromal vascular fraction: a promising treatment for severe burn injury. Human Cell 35, 1323–1337 (2022). https://doi.org/10.1007/s13577-022-00743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00743-z

Keywords

Navigation