Skip to main content

Advertisement

Log in

SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the role of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) in cardiac remodeling after myocardial infarction (MI) and explore the underlying molecular mechanism. MI model was established by ligation of the left anterior descending coronary artery. C57/BL6J mice were randomly administered with 3.0 mg/kg/day PHPS1 (PHPS1-treated group) or normal saline (model group) by intraperitoneal injection. After 4 weeks of infusion, the effects of PHPS1 on cardiac remodeling were evaluated. Echocardiography results showed that PHPS1 treatment aggravated the MI-induced deterioration of cardiac function, with worse cardiac function parameters. PHPS1 treatment significantly increased the infarcted area, as well as the fibrotic area and the expression of collagen I and collagen III. Western blots and immunofluorescence staining showed that PHPS1 treatment up-regulated the expression of p-GRK2, p-SMAD2/3 and p-ERK1/2, while U0126 reversed the effect of PHPS1. The present study indicated that PHPS1 treatment contributed to myocardial fibrosis and infarction by activating ERK/SMAD signaling pathway, suggesting that SHP-2 may be a promising treatment target for cardiac remodeling after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Khan M, Kwiatkowski P, Rivera BK, Kuppusamy P. Oxygen and oxygenation in stem-cell therapy for myocardial infarction. Life Sci. 2010;87(9–10):269–74.

    Article  CAS  Google Scholar 

  2. Martínez-Martínez E, Buonafine M, Boukhalfa I, Ibarrola J, Fernández-Celis A, Kolkhof P, et al. Aldosterone target NGAL (Neutrophil Gelatinase-Associated Lipocalin) is involved in cardiac remodeling after myocardial infarction through NFκB pathway. Hypertension (Dallas, Tex: 1979). 2017;70(6):1148–56. https://doi.org/10.1161/hypertensionaha.117.09791.

    Article  Google Scholar 

  3. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65. https://doi.org/10.1038/nrcardio.2014.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol. 2018;175(9):1377–400. https://doi.org/10.1111/bph.14155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frangogiannis NG. The role of transforming growth factor (TGF)-β in the infarcted myocardium. J Thorac Dis. 2017;9(Suppl 1):S52–s63. https://doi.org/10.21037/jtd.2016.11.19.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kanisicak O, Khalil H, Ivey MJ, Karch J, Maliken BD, Correll RN, et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat Commun. 2016;7(1):1–14.

    Article  Google Scholar 

  7. Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Investig. 2014;124(7):2921–34. https://doi.org/10.1172/jci74783.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Baumgardt SL, Fang J, Shi Y, Qiao S, Bosnjak ZJ, et al. Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep. 2017;7(1):3093. https://doi.org/10.1038/s41598-017-03234-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu J, Zhang L, Zhao Z, Zhang M, Lin J, Wang J, et al. OSM mitigates post-infarction cardiac remodeling and dysfunction by up-regulating autophagy through Mst1 suppression. Biochim Biophys Acta. 2017;1863(8):1951–61. https://doi.org/10.1016/j.bbadis.2016.11.004.

    Article  CAS  Google Scholar 

  10. Niogret C, Birchmeier W, Guarda G. SHP-2 in lymphocytes' cytokine and inhibitory receptor signaling. Front Immunol. 2019;10:2468. https://doi.org/10.3389/fimmu.2019.02468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tzouvelekis A, Yu G, Herazo-maya J, Xylourgidis N, Herzog E, Bennett A, et al. SH2 domain-containing phosphatase-SHP-2 is a novel regulator of fibroblast homeostasis in Pulmonary Fibrosis. QJM. 2016;109(suppl_1):S20-S.

    Google Scholar 

  12. Liu X, Li Y, Zhang Y, Lu Y, Guo W, Liu P, et al. SHP-2 promotes the maturation of oligodendrocyte precursor cells through Akt and ERK1/2 signaling in vitro. PLoS ONE. 2011;6(6):e21058. https://doi.org/10.1371/journal.pone.0021058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bandyopadhyay B, Han A, Dai J, Fan J, Li Y, Chen M, et al. TbetaRI/Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression. J Cell Sci. 2011;124(Pt 1):19–24. https://doi.org/10.1242/jcs.076505.

    Article  CAS  PubMed  Google Scholar 

  14. Otsuka M, Goto K, Tsuchiya S, Aramaki Y. Phosphatidylserine-specific receptor contributes to TGF-beta production in macrophages through a MAP kinase. ERK Biol Pharm Bull. 2005;28(9):1707–10. https://doi.org/10.1248/bpb.28.1707.

    Article  CAS  PubMed  Google Scholar 

  15. Hao J, Ju H, Zhao S, Junaid A, Scammell-La Fleur T, Dixon IM. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol. 1999;31(3):667–78. https://doi.org/10.1006/jmcc.1998.0902.

    Article  CAS  PubMed  Google Scholar 

  16. Odekerken JC, Walenkamp GH, Brans BT, Welting TJ, Arts JJ. The longitudinal assessment of osteomyelitis development by molecular imaging in a rabbit model. Biomed Res Int. 2014;2014:424652. https://doi.org/10.1155/2014/424652.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patel M, Rojavin Y, Jamali AA, Wasielewski SJ, Salgado CJ. Animal models for the study of osteomyelitis. Semin Plast Surg. 2009;23(2):148–54. https://doi.org/10.1055/s-0029-1214167.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nishiya D, Omura T, Shimada K, Matsumoto R, Kusuyama T, Enomoto S, et al. Effects of erythropoietin on cardiac remodeling after myocardial infarction. J Pharmacol Sci. 2006;101(1):31–9. https://doi.org/10.1254/jphs.fp0050966.

    Article  CAS  PubMed  Google Scholar 

  19. Shen S, Jiang H, Bei Y, Zhang J, Zhang H, Zhu H, et al. Qiliqiangxin attenuates adverse cardiac remodeling after myocardial infarction in ovariectomized mice via activation of PPARγ. Cell Physiol Biochem. 2017;42(3):876–88. https://doi.org/10.1159/000478641.

    Article  CAS  PubMed  Google Scholar 

  20. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Fact (Chur, Switzerland). 2011;29(5):196–202. https://doi.org/10.3109/08977194.2011.595714.

    Article  CAS  Google Scholar 

  21. Yu L, Hébert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 2002;21(14):3749–59. https://doi.org/10.1093/emboj/cdf366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–91. https://doi.org/10.1146/annurev.biochem.67.1.753.

    Article  PubMed  Google Scholar 

  23. Im YN, Lee YD, Park JS, Kim HK, Im SY, Song HR, et al. GPCR Kinase (GRK)-2 is a key negative regulator of itch: l-glutamine attenuates itch via a rapid induction of GRK2 in an ERK-dependent way. J Invest Dermatol. 2018;138(8):1834–42. https://doi.org/10.1016/j.jid.2018.02.036.

    Article  CAS  PubMed  Google Scholar 

  24. Zehender A, Huang J, Györfi AH, Matei AE, Trinh-Minh T, Xu X, et al. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun. 2018;9(1):3259. https://doi.org/10.1038/s41467-018-05768-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283(12):2219–32. https://doi.org/10.1111/febs.13665.

    Article  CAS  PubMed  Google Scholar 

  26. Fiorentini C, Savoia P, Savoldi D, Barbon A, Missale C. Persistent activation of the D1R/Shp-2/Erk1/2 pathway in l-DOPA-induced dyskinesia in the 6-hydroxy-dopamine rat model of Parkinson's disease. Neurobiol Dise. 2013;54:339–48. https://doi.org/10.1016/j.nbd.2013.01.005.

    Article  CAS  Google Scholar 

  27. Rosário M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol. 2003;13(6):328–35. https://doi.org/10.1016/s0962-8924(03)00104-1.

    Article  PubMed  Google Scholar 

  28. Ivins Zito C, Kontaridis MI, Fornaro M, Feng GS, Bennett AM. SHP-2 regulates the phosphatidylinositide 3'-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis. J Cell Physiol. 2004;199(2):227–36. https://doi.org/10.1002/jcp.10446.

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Cao Z, Guan J. SHP2 inhibitor PHPS1 protects against atherosclerosis by inhibiting smooth muscle cell proliferation. BMC Cardiovasc Disord. 2018;18(1):72. https://doi.org/10.1186/s12872-018-0816-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salmond RJ, Alexander DR. SHP2 forecast for the immune system: fog gradually clearing. Trends Immunol. 2006;27(3):154–60. https://doi.org/10.1016/j.it.2006.01.007.

    Article  CAS  PubMed  Google Scholar 

  31. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. https://doi.org/10.1084/jem.20112741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zannettino AC, Roubelakis M, Welldon KJ, Jackson DE, Simmons PJ, Bendall LJ, et al. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: identification, molecular cloning and effects on cell migration. Biochem J. 2003;370(Pt 2):537–49. https://doi.org/10.1042/bj20020935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Prevention and Control of Geriatric Diseases in 2018 [number 2018135809-2].

Author information

Authors and Affiliations

Authors

Contributions

Conception and design, YT and YL; Data collection, YL, HT, QM and XL; Data analysis and interpretation, JC and XZ; Drafting article, YL, XL and YT; Administrative support, YT. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yan-Qing Tie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were performed in accordance with the guidelines for animal care and the experimental protocols were approved by the Institutional Animal Care and Use Committee of our hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YG., Tan, H., Ma, Q. et al. SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) prevents cardiac remodeling after myocardial infarction through ERK/SMAD signaling pathway. Human Cell 34, 325–334 (2021). https://doi.org/10.1007/s13577-020-00430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00430-x

Keywords

Navigation