Skip to main content

Advertisement

Log in

LncRNA terminal differentiation-induced ncRNA (TINCR) sponges miR-302 to upregulate cyclin D1 in cervical squamous cell carcinoma (CSCC)

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

This study aimed to investigate the role of lncRNA terminal differentiation-induced ncRNA (TINCR) in cervical squamous cell carcinoma (CSCC). By informatics analysis, we found that miR-302 may bind TINCR. Expression analysis showed that miR-302 was downregulated, while TINCR was upregulated in CSCC. Correlation analysis showed that they were not significantly correlated. In CSCC cells, miR-302 and TINCR failed to affect the expression of each other. However, miR-302 overexpression led to downregulated and TINCR overexpression led to upregulated cyclin D1 expression in CSCC cells. Interestingly, overexpression of cyclin D1 led to upregulated miR-302 and TINCR. Cell proliferation analysis showed that TINCR and cyclin D1 overexpression led to increased, while miR-302 overexpression led to decreased rate of cell proliferation. Moreover, miR-302 overexpression reduced the effects of TINCR overexpression. Therefore, TINCR sponges miR-302 to upregulate cyclin D1 in CSCC, thereby promoting cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  2. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30(Suppl 5):F12–23. https://doi.org/10.1016/j.vaccine.2012.07.055.

    Article  PubMed  Google Scholar 

  3. Groves IJ, Coleman N. Pathogenesis of human papillomavirus-associated mucosal disease. J Pathol. 2015;235(4):527–38. https://doi.org/10.1002/path.4496.

    Article  CAS  PubMed  Google Scholar 

  4. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–27. https://doi.org/10.1056/NEJMoa021641.

    Article  PubMed  Google Scholar 

  5. Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer. 2003;88(1):63–73. https://doi.org/10.1038/sj.bjc.6600688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stanley MA, Sudenga SL, Giuliano AR. Alternative dosage schedules with HPV virus-like particle vaccines. Expert Rev Vaccines. 2014;13(8):1027–38. https://doi.org/10.1586/14760584.2014.935767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18. https://doi.org/10.1038/nrc.2017.99.

    Article  CAS  PubMed  Google Scholar 

  8. Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer—a brief overview. Adv Biol Regul. 2015;57:1–9. https://doi.org/10.1016/j.jbior.2014.09.013.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt AM, Chang HY. Long non-coding RNAs in cancer pathways. Cancer Cell. 2016;29(4):452–63. https://doi.org/10.1016/j.ccell.2016.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34(4):9–14.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Z, Liu Y, He A, Li J, Chen M, Zhan Y, et al. Theophylline controllable RNAi-based genetic switches regulate expression of lncRNA TINCR and malignant phenotypes in bladder cancer cells. Sci Rep. 2016;6:30798. https://doi.org/10.1038/srep30798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang ZY, Lu YX, Zhang ZY, Chang YY, Zheng L, Yuan L, et al. Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget. 2016;7(16):22639–49. https://doi.org/10.18632/oncotarget.8141.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Card DA, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28(20):6426–38. https://doi.org/10.1128/MCB.00359-08.

    Article  CAS  PubMed  Google Scholar 

  14. Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, et al. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial–mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer. 2019;18(1):3. https://doi.org/10.1186/s12943-018-0931-9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions-beyond repression of gene expression. Nat Rev Genet. 2014;15(9):599–612. https://doi.org/10.1038/nrg3765.

    Article  CAS  PubMed  Google Scholar 

  16. Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget. 2015;6(26):22513–25. https://doi.org/10.18632/oncotarget.4154.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA–lncRNA interactions. Methods Mol Biol. 2016;1402:271–86. https://doi.org/10.1007/978-1-4939-3378-5_21.

    Article  CAS  PubMed  Google Scholar 

  18. Faherty N, Curran SP, O’Donovan H, Martin F, Godson C, Brazil DP, et al. CCN2/CTGF increases expression of miR-302 microRNAs, which target the TGFbeta type II receptor with implications for nephropathic cell phenotypes. J Cell Sci. 2012;125(Pt 23):5621–9. https://doi.org/10.1242/jcs.105528.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anli Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

University of Chinese Academy of Sciences Shenzhen Hospital Ethics Committee approved this study. All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, A., Zhang, Y., Zheng, Y. et al. LncRNA terminal differentiation-induced ncRNA (TINCR) sponges miR-302 to upregulate cyclin D1 in cervical squamous cell carcinoma (CSCC). Human Cell 32, 515–521 (2019). https://doi.org/10.1007/s13577-019-00268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00268-y

Keywords

Navigation