Skip to main content

Advertisement

Log in

Characterization of a new glioblastoma cell line, GB-val4, with unusual TP53 mutation

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

A novel cell line derived from a human glioblastoma (GB), named GB-val4, has been established and characterized. GB-val4 cells were hyperdiploid, with many numerical and structural chromosomal rearrangements. The cell line did not show mutations in IDH1/IDH2 genes or EGFR amplification, but it presented two missense mutations in TP53, which imply a very low p53 protein activity within the cell line. Cells also had gain of TP73 copies, hypermethylation of APC, CASP8 and RASSF1, increased expression of ARF1, CDH1 and NF-κB and decreased expression of CDKN2A. Tumorigenity was demonstrated by transplant of GB-val4 cells into athymic nude mice, where solid tumors were grown. Interestingly, a high percentage of GB-val4 cells presented expression of GSC markers CD133 or CD44. These GSC markers were increased in neurosphere cultures, which better mimic solid tumor conditions and maintain the genetic features of the tumor cells. In this study, we aimed to define the characteristics of this novel cell line and its applications in human cancer research. With its genetic features and a poor p53 activity, GB-val4 cells resemble GB tumors. Moreover, the important presence of GSCs in adherent cultures and especially in neurosphere cultures makes GB-val4 an attractive tool to study cancer stem cells, deepen in the knowledge the molecular pathways of GB and develop new therapeutic strategies for patients with these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  Google Scholar 

  3. Dahlback H-SS, Brandal P, Meling TR, Gorunova L, Scheie D, Heim S. Genomic aberrations in 80 cases of primary glioblastoma multiforme: pathogenetic heterogeneity and putative cytogenetic pathways. Genes Chromosomes Cancer. 2009;48:908–24.

    Article  CAS  Google Scholar 

  4. Navarro L, Gil-Benso R, Megías J, Muñoz-Hidalgo L, San-Miguel T, Callaghan RC, et al. Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status. Neuroscience. 2015;297:243–51.

    Article  CAS  Google Scholar 

  5. Nobusawa S, Lachuer J, Wierinckx A, Kim YH, Huang J, Legras C, et al. Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol. 2010;20:936–44.

    CAS  PubMed  Google Scholar 

  6. Benito R, Gil-Benso R, Quilis V, Pérez M, Gregori-Romero M, Roldán P, et al. Primary glioblastomas with and without EGFR amplification: relationship to genetic alterations and clinicopathological features. Neuropathology. 2010;30:392–400.

    Article  Google Scholar 

  7. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.

    Article  CAS  Google Scholar 

  8. Jhanwar-Uniyal M, Labagnara M, Friedman M, Kwasnicki A, Murali R. Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers (Basel). 2015;7:538–55.

    Article  CAS  Google Scholar 

  9. Megías J, Martínez A, San-Miguel T, Gil-Benso R, Muñoz-Hidalgo L, Albert-Bellver D, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs. 2019;. https://doi.org/10.1007/s10637-019-00788-2.

    Article  PubMed  Google Scholar 

  10. Binder ZA, Wilson KM, Salmasi V, Orr BA, Eberhart CG, Siu I-M, et al. Establishment and biological characterization of a panel of glioblastoma multiforme (GBM) and GBM variant oncosphere cell lines. PLoS One. 2016;11:e0150271.

    Article  Google Scholar 

  11. Gil-Benso R, López-Ginés C, López-Guerrero JA, Carda C, Callaghan RC, Navarro S, et al. Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin. Lab Invest. 2003;83:877–87.

    Article  CAS  Google Scholar 

  12. López-Ginés C, Cerdá-Nicolás M, Gil-Benso R, Pellín A, López-Guerrero JA, Callaghan R, et al. Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin Neuropathol. 2005;24:209–18.

    PubMed  Google Scholar 

  13. Donovan P, Cato K, Legaie R, Jayalath R, Olsson G, Hall B, et al. Hyperdiploid tumor cells increase phenotypic heterogeneity within glioblastoma tumors. Mol BioSyst. 2014;10:741–58.

    Article  CAS  Google Scholar 

  14. Soldevilla B, Millán CS, Bonilla F, Domínguez G. The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer. 2013;52:989–1006.

    Article  CAS  Google Scholar 

  15. Carreira S, Romanel A, Goodall J, Grist E, Ferraldeschi R, Miranda S, et al. Tumor clone dynamics in lethal prostate cancer. Sci Transl Med. 2014;6:254ra125.

    Article  Google Scholar 

  16. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481:306–13.

    Article  CAS  Google Scholar 

  17. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3:17–30.

    Article  CAS  Google Scholar 

  18. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  CAS  Google Scholar 

  19. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37:865–76.

    Article  CAS  Google Scholar 

  20. ClinVar [Internet]. https://www.ncbi.nlm.nih.gov/clinvar/. Accessed 28 May 2019.

  21. Shurbaji MS, Kalbfleisch JH, Thurmond TS. Immunohistochemical detection of p53 protein as a prognostic indicator in prostate cancer. Hum Pathol. 1995;26:106–9.

    Article  CAS  Google Scholar 

  22. Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article  Google Scholar 

  23. Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25:304–17.

    Article  CAS  Google Scholar 

  24. Gil-Benso R, Megías J, San-Miguel T, Pinto S, Callaghan RC, López-Ginés C, et al. Characterization of the new human pleomorphic undifferentiated sarcoma TP53-null cell line mfh-val2. Cytotechnology. 2017;69:539–50.

    Article  CAS  Google Scholar 

  25. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg. 2016;3:21.

    PubMed  PubMed Central  Google Scholar 

  26. Yan K, Yang K, Rich JN. The evolving landscape of glioblastoma stem cells. Curr Opin Neurol. 2013;26:701–7.

    Article  Google Scholar 

  27. Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36:177–85.

    Article  CAS  Google Scholar 

  28. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article  CAS  Google Scholar 

  29. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res. 2006;66:10247–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants PROMETEO 2011-11/83 from the Generalitat Valenciana and PI14/01669 from the Ministerio de Economía y Competividad-Spain (Instituto de Salud Carlos III). We acknowledge to Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Megías.

Ethics declarations

Conflict of interest

All authors have approved the final version of the article. The authors declare that they have no conflict of interest.

Research involving animals

All assays involving mice were approved by the Institutional Animal Care and Use Committee (University of Valencia) and were carried out in strict accordance with the “Real Decreto 1201/2005, BOE 252” for the Care and Use of Laboratory Animals of the “Ministerio de la Presidencia,” Spain. All efforts were made to minimize suffering.

Informed consent

Approval for the study herein reported was provided by Institutional Ethics Committee of the University of Valencia and Clinic Hospital of Valencia (Ley 14/2007 de Investigación Biomédica, ethics committee approval on 2015/06/03).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Hidalgo, L., San-Miguel, T., Megías, J. et al. Characterization of a new glioblastoma cell line, GB-val4, with unusual TP53 mutation. Human Cell 32, 557–567 (2019). https://doi.org/10.1007/s13577-019-00267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00267-z

Keywords

Navigation