Skip to main content
Log in

Isolation, functional characterization and stress responses of raffinose synthase genes in sugar beet

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Raffinose (sucrosylgalactoside oligosaccharide) is a water soluble carbohydrate and accumulates in response to abiotic stresses in plants. Plant raffinose synthases are poorly characterized, and the genes involved in raffinose biosynthesis are unknown in sugar beet. Here, we report the isolation of two genes encoding raffinose synthase (BvRS1 and BvRS2) as well as a gene encoding galactinol synthase (BvGolS1) from sugar beet. BvRS1 and BvRS2 show high homologies to Arabidopsis raffinose synthase AtRS5. BvRS1 and BvGolS1 were expressed in Escherichia coli. Crude extracts showed the activities of raffinose synthase and galactinol synthase. The K m values of BvRS1 for galactinol and sucrose and the K m values of BvGolS1 for UDP-galactose and myo-inositol were determined. The expression levels of BvRS1 were significantly higher than that of BvRS2. The mRNA for BvRS1 was rapidly induced by cold stress whereas the mRNA for BvRS2 was slowly induced by cold and salt stresses. These data suggest that BvRS1 and BvRS2 encode raffinose synthase genes responsible to cold and salt stress, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Bv:

Beta vulgaris

DTT:

Dithiothreitol

Gol:

Galactinol

GolS:

Galactinol synthase

Raf:

Raffinose

RafS:

Raffinose synthase

RFO:

Raffinose family of oligosaccharides

References

  • Bachmann M, Matile P, Keller F (1994) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. (cold acclimation, translocation, and sink to source transition; discovery of chain elongation enzyme). Plant Physiol 105:1335–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RJ, Serro RF (1953) Isolation and identification of o-α-d-Galactopyranosyl-myo-inositol and of myo-inositol from juice of the sugar beet (Beta vulgaris). J Am Chem Soc 75:1040–1042

    Article  CAS  Google Scholar 

  • Caffrey M, Fonseca V, Leopold AC (1988) Lipid-sugar interactions: relevance to anhydrous biology. Plant Physiol 86:754–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  PubMed  Google Scholar 

  • Egert A, Keller F, Peters S (2013) Abiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase (RS5, At5g40390). BMC Plant Biol 13:218–226

    Article  PubMed  PubMed Central  Google Scholar 

  • ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol (Stuttg) 16:1–8

    Article  CAS  Google Scholar 

  • Gangl R, Behmüller R, Tenhaken R (2015) Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana. Front Plant Sci 6:789

    Article  PubMed  PubMed Central  Google Scholar 

  • Garman SC, Hannick L, Zhu A, Garboczi DN (2002) The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure 10:425–434

    Article  CAS  PubMed  Google Scholar 

  • Handley LW, Pharr DM, McFeeters RF (1983) Relationship between galactinol synthase activity and sugar composition of leaves and seeds of several crop species. J Am Soc Hortic Sci 108:600–605

    CAS  Google Scholar 

  • Kageyama H, Tripathi K, Rai AK, Cha-Um S, Waditee-Sirisattha R, Takabe T (2011) An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Microbiol 77:5178–5183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karner U, Peterbauer T, Raboy V, Jones DA, Hedley CL, Richter A (2004) myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharide in seeds. J Exp Bot 55:1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li T, Kim WD, Kitaoka M, Yoshida S, Nakajima M, Kobayashi H (2007) Characterization of raffinose synthase from rice (Oryza sativa L. var. Nipponbare). Biotechnol Lett 29:635–640

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Odegard W, de Lumen BO (1995) Galactinol synthase from kidney bean cotyledon and zucchini leaf. Plant Physiol 109:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides. Carbohydr Polym 68:587–597

    Article  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Uchida A, Takabe T, Shinagawa F, Tanaka Y, Takabe T, Hayashi T, Hattori T, Rai AK, Takabe T (2009) Enrichment of sugar content in melon fruits by hydrogen peroxide treatment. J Plant Physiol 166:569–578

    Article  CAS  PubMed  Google Scholar 

  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:185–197

    CAS  Google Scholar 

  • Peterbauer T, Lahuta LB, Blöchl A, Mucha J, Jones DA, Hedley CL, Gòrecki RL, Richter A (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127:1764–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer T, Mach L, Mucha J, Richter A (2002) Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215:839–846

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscose (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    Article  CAS  PubMed  Google Scholar 

  • Peters S, Egert A, Stieger B, Keller F (2010) Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern. Plant Cell Physiol 51:1815–1819

    Article  CAS  PubMed  Google Scholar 

  • Saravitz DM, Pharr DM, Caster TE (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol 83:185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Mukherjee S, Basak P, Majumder AL (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci 6:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Sprenger N, Keller F (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J 21:249–258

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426

    Article  CAS  PubMed  Google Scholar 

  • Takabe T, Tanaka Y, Takabe T (2015) Betaine in sugar beet. In: Preedy VR (ed) Betaine. The Royal Society of Chemistry, VR Preedy, pp 9–28

    Chapter  Google Scholar 

  • Tsutsumi K, Yamada N, Cha-um S, Tanaka Y, Takabe T (2015) Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity. J Plant Physiol 176:101–107

    Article  CAS  PubMed  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T (2009) Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet—importance of long-distance translocation of betaine under normal and salt-stressed conditions. J Plant Physiol 166:2058–2070

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Sakakibara S, Tsutsumi K, Waditee R, Tanaka Y, Takabe T (2011) Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. J Plant Physiol 168:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Takahashi H, Kitou K, Sahashi K, Tamagake H, Tanaka Y, Takabe T (2015) Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine. Plant Physiol Biochem 96:217–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan and the International Center for Green Biotechnology of Meijo University to T.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiro Takabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Nucleotide sequence data for raffinose synthase genes, BvRS1 and BvRS2, and galactinol synthase gene, BvGolS1, from sugar beet are available in the DDJB database under the accession numbers LC179838, LC179839 and LC179840, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kito, K., Yamane, K., Yamamori, T. et al. Isolation, functional characterization and stress responses of raffinose synthase genes in sugar beet. J. Plant Biochem. Biotechnol. 27, 36–45 (2018). https://doi.org/10.1007/s13562-017-0413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-017-0413-y

Keywords

Navigation