Skip to main content
Log in

Biologie, transport, complexité

Biology, transportation, complexity

  • Article Original / Original Article
  • Published:
Recherche Transports Sécurité

Résumé

Partant de quelques analogies entre biologie et transports, notamment avec les notions d’évolution et de sélection, on se demande si certains concepts et méthodes utilisés en biologie ne peuvent pas fournir des pistes de recherche dans le domaine des transports. Nous nous intéressons à la notion de complexité qui nous paraît commune aux deux domaines scientifiques, mais qui n’est pas abordée de la même manière selon les disciplines. En observant la manière dont la biologie systémique s’est développée, à partir d’une approche massivement data-driven de recherche guidée par les données, nous nous demandons si une telle orientation est possible dans le domaine des transports. Cette exploration nous amène également à poser la question des « modules » ou des frontières des sous-systèmes étudiés dans le domaine des transports en observant que la biologie moléculaire définit ces frontières en référence à la fonction des sous-systèmes. Pour conclure, nous exprimons l’espoir que ces comparaisons suscitent de nouvelles pistes de recherches dans le domaine des transports.

Abstract

As a result of some of the analogies between biology and transport, including the concepts of evolution and selection, we are wondering whether some ideas and methods used in biology may not be used to provide research avenues within the field of transportation. We are interested in the idea of complexity, which is common to the two scientific fields, but not treated in the same way by either of the two disciplines. By observing the way in which systemic biology has developed, from a largely “data-driven” approach to research guided by data, we are questioning whether such a direction would be possible in the field of transportation. This investigation also leads us to ask questions about “modules”, or the boundaries of the subsystems studied in the field of transportation, through the observation that molecular biology defines these boundaries in terms of the function of the subsystems. In conclusion, we are expressing the notion that these comparisons will lead to new research avenues in the field of transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Descartes R (1637) Discours de la méthode pour bien conduire la raison et chercher la vérité dans les sciences. Ian Maire, Leyde

    Google Scholar 

  2. Morin E (1990) Introduction à la pensée complexe. Éditions du Seuil, Points Essais

    Google Scholar 

  3. Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–112

    Article  Google Scholar 

  4. Artavanis-Tsakonas S, Muskavitch M (2010) Notch: the past, the present, and the future. Curr Top Dev Biol 92:1–29

    Article  Google Scholar 

  5. Shannon CE (1948) The mathematical theory of communication. Bell System Technical J 27:379–423

    MathSciNet  MATH  Google Scholar 

  6. Wilde GJS (1982) The theory of risk homeostasis: implications for safety and health. Risk Analysis 2:209–225

    Article  Google Scholar 

  7. Reason J (2000) Human error: models and management. BMJ 320:768–770

    Article  Google Scholar 

  8. Lamb MJ, Collis R, Deix S, et al (2011) The forever open road. Definig the next generation road. AIPCR World Congress, Mexico

    Google Scholar 

  9. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  10. Piaget J (1936) La naissance de l’intelligence chez l’enfant. Delachaux et Niestlé

  11. Saad F (2006) Some critical issues when studying behavioural adaptations to new driver support systems. Cognition, Technology & Work 8:175–181

    Article  Google Scholar 

  12. Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21:25–34

    Article  Google Scholar 

  13. Morin E (1986) La méthode III: la connaissance de la connaissance. Éditions du Seuil, Points Essais

    Google Scholar 

  14. Land MF, Lee DN (1994) Where we look when we steer. Nature 369:742–744

    Article  Google Scholar 

  15. Kingstone A, Smilek D, Eastwood JD (2008) Cognitive ethology: a new approach for studying human cognition. Br J Psychol 99:317–340

    Article  Google Scholar 

  16. Wiener N (1948) Cybernetics or control and communication in the animal and the machine. Hermann, Paris

    Google Scholar 

  17. Fisher J, Harel D, Henzinger TA (2011) Biology as reactivity. Communications of the ACM 54:72–82

    Article  Google Scholar 

  18. Donges E (1978) A two-level model of driver steering behavior. Hum Factors 20:691–707

    Google Scholar 

  19. Bellet T, Tattegrain-Veste H (1999) A framework for representing driving knowledge. Inter J Cogn Ergonomics 3:37–49

    Article  Google Scholar 

  20. Salvucci DD (2006) Modeling driver behavior in a cognitive architecture. Hum Factors 48:362–380

    Article  Google Scholar 

  21. Von Bertalanffy L (1968) General System theory: Foundations, Development, Applications. George Braziller, New York

    Google Scholar 

  22. Burmeister B, Haddadi A, Matylis G (1997) Application of multi-agent systems in traffic and transportation. In: Proc. of IEE Software Engineering 144:51–60

    Article  Google Scholar 

  23. Cetin N, Nagel K, Raney B, Voellmy A (2002). Large-scale multi-agent transportation simulations. Comput Phys Commun 147:559–564

    Article  MATH  Google Scholar 

  24. McLaughlin SB, Hankey JM, Dingus TA (2008) A method for evaluating collision avoidance systems using naturalistic driving data. Accid Anal Prev 40:8–16

    Article  Google Scholar 

  25. Sullivan JM, Tsimhoni O, Bogard S (2008) Warning reliability and driver performance in naturalistic driving. Hum Factors 50:845–852

    Article  Google Scholar 

  26. Aderem A (2005) Systems biology: its practice and challenges. Cell 121:511–513

    Article  Google Scholar 

  27. Kourilski P (2007) Naissance de l’immunologie systémique. Collège de France, résumé de cours

  28. Bell G, Hey T, Szalay A (2009) Beyond the data deluge. Science 323:1297–1298

    Article  Google Scholar 

  29. Hey T, Tansley S, Tolle K (eds) (2009) The fourth paradigm. Microsoft Research

  30. Workman CT, Mak C, McCuine S, et al (2006). A systems approach to mapping DNA damage response pathways. Science 312:1054–1059

    Article  Google Scholar 

  31. Pierce BL, Friedrichsen-Karyadi DM, McIntosh L, et al (2007). Genomic scan of 12 hereditary prostate cancer families having an occurrence of pancreas cancer. Prostate 67:410–415

    Article  Google Scholar 

  32. Hoc JM (2001) Towards ecological validity of research in cognitive ergonomics. Theor Adv Cogn Ergonomics 2:278–288

    Article  Google Scholar 

  33. Kemeny A, Panerai F (2003) Evaluating perception in driving simulation experiments. Trends Cogn Sci 7:31–37

    Article  Google Scholar 

  34. Auberlet JM, Rosey F, Anceaux F, et al (2012) The impact of perceptual treatments on driver’s behavior: from driving simulator studies to field tests. First results. Accid Anal Prev 45:91–98

    Article  Google Scholar 

  35. Brémond R, Bodard V, Dumont E, Nouailles-Mayeur A (2012) Target visbility level and detection distance on a driving simulator. Lighting Res Technol (in press)

  36. Hartwell LH, Hopfield JH, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(Suppl):C47–C52

    Article  Google Scholar 

  37. Lestel D (2001) Les origines animales de la culture. Flammarion

  38. Yamazaki K, Beauchamp GK (2007) Genetic basis for MHCdependent mate choice. Adv Genet 59:129–145

    Article  Google Scholar 

  39. Watts DJ, Strogatz SH (1998) Collective dynamics of ’smallworld’ networks. Nature 393:440–442

    Article  Google Scholar 

  40. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  Google Scholar 

  41. Aldana M, Cluzel PA (2003) Natural class of robust networks. PNAS 100:8710–8714

    Article  Google Scholar 

  42. Grimm V, Revilla E, Berger U, et al (2005) Pattern oriented modelling of agent-based complex systems: lessons from ecology. Science 310:987–991

    Article  Google Scholar 

  43. Wagner A (2005) Robustness and evolvability in Living systems. Princeton University Press

  44. Malaparte K (1931) Technique du coup d’État. Grasset, Paris

    Google Scholar 

  45. Bouveresse J (1999) Prodiges et vertiges de l’analogie: de l’abus des belles-lettres dans la pensée. Raisons d’Agir

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brémond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brémond, R. Biologie, transport, complexité. Rech. Transp. Secur. 28, 248–255 (2012). https://doi.org/10.1007/s13547-012-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13547-012-0034-8

Mots clés

Keywords

Navigation