Skip to main content

Advertisement

Log in

History and National Initiatives of Carbon Nanotube and Graphene Research in Brazil

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, we first introduce and discuss the fundamental science of carbon nanomaterials (especially nanotubes and graphene) and the different technological applications from using these materials. We then discuss the first works of Brazilians scientists, done in collaboration with scientists of other countries and, in particular, the role of Prof. M. S. Dresselhaus from MIT, US, in the development of the nanocarbon science in Brazil. We briefly discuss some experimental and theoretical works about nanotubes and graphene done in Brazil in the late 1990s and early 2000s, and the formation of the first Brazilian network on carbon nanotubes in 2005. We present the activities of the National Institute of Science and Technology (INCT) in Carbon Nanomaterials (CN) created in 2009. A scientometric analysis is used to describe the INCT-CN network formation. Finally, we present the Center of Technology in Nanomaterials (CTNano) installed at UFMG, where pilot plants were developed to produce graphene and nanotubes at large scales, and the work being done at the center in collaboration with companies aiming to solve specific technological problems and to create bridges between the academic and the industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  4. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, 1st edn. (Imperial College Press, London, 1998), p. 259

    Google Scholar 

  5. P. Ludvig, J.M. Calixto, L.O. Ladeira, I.C.P. Gaspar, Using converter dust to produce low cost cementitious composites by in situ carbon nanotube and nanofiber synthesis. Materials 4, 575–584 (2011)

    ADS  Google Scholar 

  6. W.A. de Heer, A. Châtelain, D. Ugarte, A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)

    ADS  Google Scholar 

  7. W.A. de Heer, J. Bonard, K. Fauth, A. Chatelain, L. Forro, D. Ugarte, Electron field emitters based on carbon nanotube films. Adv. Mater. 9, 87–89 (1997)

    Google Scholar 

  8. D. Ugarte, A. Châtelain, W.A. de Heer, Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897–1899 (1996)

    ADS  Google Scholar 

  9. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    ADS  Google Scholar 

  10. M.A. Pimenta, A. Marucci, S.D.M. Brown, M.J. Matthews, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Resonant Raman effect in single-wall carbon nanotubes, J. Mater. Res. 13, 2396 (1998)

  11. M.A. Pimenta, A. Marucci, S. Empedocles, M. Bawendi, E.B. Hanlon, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhaus, M.S. Dresselhaus, Raman modes of metallic carbon nanotubes. Phys. Rev. B Condens. Matter 58, R16016–R16019 (1998)

    ADS  Google Scholar 

  12. M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Origin of dispersive effect of the Raman D-band in carbon materials, Phys. Rev. B Condens. Matter 59, R6585 (1999)

  13. P. Corio, S.D.M. Brown, A. Marucci, M.A. Pimenta, K. Kneipp, G. Dresselhaus, M.S. Dresselhaus, Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces. Phys. Rev. B Condens. Matter 61, 13202–13211 (2000)

    ADS  Google Scholar 

  14. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001)

    ADS  Google Scholar 

  15. A.G. Souza Filho, A. Jorio, A.K. Swan, M.S. Ünlü, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Electronic transition energyEiifor an isolated(n,m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. Phys. Rev. B: Condens. Matter 63, 241404 (2001)

    ADS  Google Scholar 

  16. M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D.J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003)

    ADS  Google Scholar 

  17. A.M. Rao, M.A. Pimenta, A. Jorio, M.S.S. Dantas, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84(1820), 1820–1823 (2000)

    ADS  Google Scholar 

  18. C. Fantini, M.A. Pimenta, M.S.S. Dantas, D. Ugarte, A.M. Rao, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Micro-Raman investigation of aligned single-wall carbon nanotubes. Phys. Rev. B Rapid Comm. 63, 161405 (2001)

    ADS  Google Scholar 

  19. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Optical transition energies for carbon nanotubes from resonant raman spectroscopy: environment and temperature effects. Phys. Rev. Lett. 93, 147406 (2004)

    ADS  Google Scholar 

  20. C. Fantini, A. Jorio, M. Souza, L.O. Ladeira, A.G. Souza Filho, R. Saito, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 087401 (2004)

    ADS  Google Scholar 

  21. J.G. Huber, J.G.V. Romero, J.D. Spivey, C.A. Luengo, A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis. Quím. Nova 24, 898–900 (2001)

    Google Scholar 

  22. D. Ugarte, M.C. Schnitzler, A.J. Zarbin, M.M. Oliveira, Chem. Phys. Lett. 381, 541 (2003)

    ADS  Google Scholar 

  23. A.G. Souza Filho, S.G. Chou, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, L. An, J. Liu, A.K. Swan, M.S. Ünlü, B.B. Goldberg, A. Jorio, A. Grüneis, R. Saito, Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. Phys. Rev. B 69(11), 115428 (2004)

    ADS  Google Scholar 

  24. M.S.C. Mazzoni, H. Chacham, P. Ordejon, D. Sanchez-Portal, J.M. Soler, E. Artacho, Phys. Rev. B Condens. Matter 60, 2208 (1999)

    ADS  Google Scholar 

  25. M.S.C. Mazzoni, H. Chacham, Atomic restructuring and localized electron states in a bent carbon nanotube: A first-principles study. Phys. Rev. B Condens. Matter 61, 7312–7315 (2000)

    ADS  Google Scholar 

  26. M.S.C. Mazzoni, H. Chacham, Bandgap closure of a flattened semiconductor carbon nanotube: a first-principles study. Appl. Phys. Lett. 76, 1561–1563 (2000)

    ADS  Google Scholar 

  27. S.B. Fagan, R. Mota, A.J.R. Da Silva, A. Fazzio, Substitutional Si doping in deformed carbon nanotubes. Nano Lett. 4, 975–977 (2004)

    ADS  Google Scholar 

  28. L.B. da Silva, S.B. Fagan, R. Mota, Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules. Nano Lett. 4, 65–67 (2004)

    ADS  Google Scholar 

  29. S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 2054141, 67 (2003)

    Google Scholar 

  30. S.B. Fagan, L.B. da Silva, R. Mota, Ab initio study of radial deformation plus vacancy on carbon nanotubes: energetics and electronic properties. Nano Lett. 3, 289–291 (2003)

    ADS  Google Scholar 

  31. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 64, 854131 (2001)

    Google Scholar 

  32. S.B. Fagan, R. Mota, R. Baierle, A.J.R. da Silva, A. Fazzio, Energetics and structural properties of adsorbed atoms and molecules on silicon-doped carbon nanotubes. Mater. Charact. 50, 183–187 (2003)

    Google Scholar 

  33. S.B. Fagan, R.J. Baierle, R. Mota, A.J.R. da Silva, A. Fazzio, Ab initiocalculations for a hypothetical material: silicon nanotubes. Phys. Rev. B Condens. Matter 61, 9994–9996 (2000)

    ADS  Google Scholar 

  34. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B Condens. Matter 8, 854131 (2001)

    Google Scholar 

  35. E.B. Barros, A.G.S. Filho, V. Lemos, S.B. Fagan, C.A. Luengo, J.G. Huber, Charge transfer effects in acid treated single-wall carbon nanotubes. Carbon 43, 2495–2500 (2005)

    Google Scholar 

  36. S.B. Fagan, A.G.S. Filho, J.M. Filho, P. Corio, M.S. Dresselhaus, Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chem. Phys. Lett. 406, 54–59 (2005)

    ADS  Google Scholar 

  37. S.B. Fagan, A.G. Souza, J.O.G. Lima, J. Mendes, O.P. Ferreira, I.O. Mazali, O.L. Alves, M.S. Dresselhaus, 1,2-Dichlorobenzene interacting with carbon nanotubes. Nano Lett. 4, 1285–1288 (2004)

    ADS  Google Scholar 

  38. A.G. Souza Filho et al., Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology 14, 1130–1139 (2003)

    ADS  Google Scholar 

  39. D. Grimm, P. Venezuela, A. Latgé, Thermal and mechanical stability of Y-shaped carbon nanotubes. Phys. Rev. B Condens. Matter 71, 155425 (2005)

    ADS  Google Scholar 

  40. A. Latgé, D. Grimm, P. Venezuela, Y-shaped carbon nanotubes: structural stability and transport properties. J. Mol. Catal. A Chem. 228, 125–130 (2005)

    Google Scholar 

  41. P. Orellana, M.L. de Guevara, M. Pacheco, A. Latge, Phys. Rev. B 68, 53211 (2003)

    Google Scholar 

  42. C. Rocha, T. Dargam, A. Latgé, Phys. Rev. B 65, 5431 (2002)

    Google Scholar 

  43. P. Tangney, R.B. Capaz, C.D. Spataru, M.L. Cohen, S.G. Louie, Structural transformations of carbon nanotubes under hydrostatic pressure. Nano Lett. 5, 2268–2273 (2005)

    ADS  Google Scholar 

  44. R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, S.G. Louie, Temperature dependence of the band gap of semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 036801 (2005)

    ADS  Google Scholar 

  45. R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, S.G. Louie, Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes. Phys. Status Solidi (B) 241, 3352–3359 (2004)

    ADS  Google Scholar 

  46. M. Verissimo-Alves, B. Koiller, H. Chacham, R.B. Capaz, Electromechanical effects in carbon nanotubes: ab initio and analytical tight-binding calculations. Phys. Rev. B Condens. Matter 67, 161401 (2003)

    ADS  Google Scholar 

  47. V.R. Coluci, S.B. Legoas, M.A.M. de Aguiar, D.S. Galvão, Chaotic signature in the motion of coupled carbon nanotube oscillators. Nanotechnology 16, 583–589 (2005)

    ADS  Google Scholar 

  48. K.S. Troche, V.R. Coluci, S.F. Braga, D.D. Chinellato, F. Sato, S.B. Legoas, R. Rurali, D.S. Galvao, Prediction of ordered phases of encapsulated C60, C70, and C78 inside carbon nanotubes. Nano Lett. 5, 349–355 (2005)

    ADS  Google Scholar 

  49. S.F. Braga, V.R. Coluci, S.B. Legoas, R. Giro, D.S. Galvao, R.H. Baughman, Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)

    ADS  Google Scholar 

  50. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S. Dantas, D.S. Galvao, Gigahertz nanomechanical oscillators based on carbon nanotubes. Nanotechnology 15, S184–S189 (2004)

    ADS  Google Scholar 

  51. V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvão, R.H. Baughman, New families of carbon nanotubes based on graphyne motifs. Nanotechnology 15, S142–S149 (2004)

    ADS  Google Scholar 

  52. S.B. Legoas, V.R. Coluci, S.F. Braga, P.Z. Coura, S.O. Dantas, D.S. Galvao, Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90, 055504/1 (2003)

    ADS  Google Scholar 

  53. Y. Kopelevich, R.R. da Silva, J.H.S. Torres, S. Moehlecke, M.B. Maple, Phys. C: Supercond. 408, 77 (2004)

    ADS  Google Scholar 

  54. Y. Kopelevich, J.C.M. Pantoja, J.C. Medina, R.R. da Silva, F. Mrowka, P. Esquinazi, Anomalous Hall effect in graphite. Phys. Lett. A 355, 233–236 (2006)

    ADS  Google Scholar 

  55. L.G. Cançado, M.A. Pimenta, R. Saito, A. Jorio, L.O. Ladeira, A. Grueneis, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. Phys. Rev. B Condens. Matter 66, 035415 (2002)

    ADS  Google Scholar 

  56. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004)

    ADS  Google Scholar 

  57. L.G. Cançado, M.A. Pimenta, A. Jorio, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, Phys. Rev. Lett. 93, 047403 (2004)

    ADS  Google Scholar 

  58. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta, App. Phys. Lett. 88, 163106 (2006)

    ADS  Google Scholar 

  59. L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B Condens. Matter 76, 201401 (2007)

    ADS  Google Scholar 

  60. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473(5–6), 51–87 (2009)

    ADS  Google Scholar 

  61. C. Chen, Information Visualization: Beyond the Horizon, 2d edn. (Springer, Berlin, 2004), p. 316

  62. C. Chen, Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. 101, 5303–5310 (2004)

    ADS  Google Scholar 

  63. C. Chen, CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57, 359–377 (2006)

    Google Scholar 

Download references

Acknowledgments

Laura A. Geracitano is Postdoctoral Fellowship CAPES/BRASIL (88887.169785/2018-00).

Funding

This study is financially supported by the CNPq and FAPEMIG for the INCT in Carbon Nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange B. Fagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimenta, M.A., Geracitano, L.A. & Fagan, S.B. History and National Initiatives of Carbon Nanotube and Graphene Research in Brazil. Braz J Phys 49, 288–300 (2019). https://doi.org/10.1007/s13538-018-0618-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0618-0

Keywords

Navigation