Skip to main content
Log in

Face to Face Collisions of Ion Acoustic Multi-Solitons and Phase Shifts in a Dense Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This work investigates the interactions among ion acoustic (IA) single- and multi-soliton and their corresponding phase shifts in an unmagnetized plasma composed of degenerate electrons, positrons, and positive ions. Two-sided Korteweg-de Vries (KdV) equations are derived by employing the extended Poincaré-Lighthill-Kuo (PLK) method for the stretched coordinates. The single- and multi-soliton solutions of the KdV equations are constructed by using the Hirota’s method. The phase shifts are determined for two-, four-, six-, and eight-IA scattering solitons. The effect of positron concentration on electrostatic IA resonances due to the interactions among solitons and their corresponding phase shifts are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.D. Jung, Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas. Phys. Plasmas. 8(8), 3842 (2001). https://doi.org/10.1063/1.1386430

  2. M. Marklund, P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591–640 (2006)

    Article  ADS  Google Scholar 

  3. T.C. Killan, Cool vibes. Nature 441, 297–298 (2006)

    Article  ADS  Google Scholar 

  4. K. Becker, K. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles Mariono, Nature 47, B513 (2005)

    Google Scholar 

  5. P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, New York, 1990), p. 65

    Book  Google Scholar 

  6. M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D.O. Gericke, M.S. Murillo, V. Filinov, V. Fortov, W. Hoyer, Theory and simulation of strong correlations in quantum Coulomb systems. J. Phys. A 36, 5921–5930 (2003)

    Article  ADS  Google Scholar 

  7. L.O. Silva, R. Bingham, J.M. Dawson, J.T. Mendonca, P.K. Shukla, Neutrino driven streaming instabilities in a dense plasma. Phys. Rev. Lett. 83, 2703–2706 (1999)

    Article  ADS  Google Scholar 

  8. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Ill. (The University of Chicago Press, Chicago, 1939)

    MATH  Google Scholar 

  9. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (Wiley, NewYork, 1983)

    Book  Google Scholar 

  10. A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, E. Saberian, Relativistic degeneracy effect on propagation of arbitrary amplitude ion-acoustic solitons in Thomas-Fermi plasmas. Plasma Fusion Res. 5, 045 (2010)

    Article  ADS  Google Scholar 

  11. M.G. Hafez, M.R. Talukder, M.H. Ali, New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma. Wave Random Complex 26, 68 (2016)

  12. G. Mandal, K. Roy, A. Paul, A. Saha, and P. Chatterjee, Overtaking collision and phase shifts of dust acoustic multi-solitons in a four component dusty plasma with nonthermal electrons. Naturforsch.70(9), 703 (2015)

  13. U.N. Ghosh, K. Roy, P. Chatterjee, Head-on collision of dust acoustic solitary waves in a four-component dusty plasma with nonthermal ions. Phys. Plasmas 18, 103703 (2011)

    Article  ADS  Google Scholar 

  14. S. Parveen, S. Mahmood, M. Adnan, A. Qamar, Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons. Phys. Plasmas 23, 092122 (2016)

    Article  ADS  Google Scholar 

  15. K. Roy, M.K. Ghorui, P. Chatterjee, M. Tribeche, Head-on collision of ion-acoustic multi-solitons in e-p-i plasma. Commun. Theor. Phys. 65, 237–246 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. N.S. Saini, K. Singh, Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma. Phys. Plasmas 23, 103701 (2016)

    Article  ADS  Google Scholar 

  17. A. Saha, P. Chatterjee, Propagation and interaction of dust acoustic multi-soliton in dusty plasmas with q-nonextensive electrons and ions. Astrophys. Space Sci. 353, 169–177 (2014)

    Article  ADS  Google Scholar 

  18. N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  Google Scholar 

  19. J.K. Xue, Head-on collision of dust-acoustic solitary waves. Phys. Rev. E 69, 016403 (2004)

    Article  ADS  Google Scholar 

  20. P. Harvey, C. Durniak, D. Samsonov, G. Morfill, Soliton interaction in a complex plasma. Phys. Rev. E 81, 057401 (2010)

    Article  ADS  Google Scholar 

  21. K. Roy, S.K. Ghosh, P. Chatterjee, Two-soliton and three-soliton interactions of electron acoustic waves in quantum plasma. Pramana J. Phys. 86, 873–883 (2016)

    Article  ADS  Google Scholar 

  22. K. Roy, S. Choudhury, P. Chatterjee, C.S. Wong, Face-to-face interaction of multisolitons in spin-1/2 quantum plasma. Pramana J. Phys. 88, 18 (2017)

    Article  ADS  Google Scholar 

  23. M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Effects of two-temperature ions on head-on collision and phase shifts of dust acoustic single- and multi-solitons in dusty plasma. Phys Plasmas 24, 103705 (2017)

    Article  ADS  Google Scholar 

  24. M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma. Chin Phys B 26, 095203 (2017)

    Article  ADS  Google Scholar 

  25. C.H. Su, R.M. Mirie, On head-on collisions between two solitary waves. J. Fluid Mech. 98(3), 509 (1980). https://doi.org/10.1017/S0022112080000262

  26. A.E. Ozden, H. Demiray, Re-visiting the head-on collision problem between two solitary waves in shallow water. Int J Non Linear Mech 69, 66–70 (2015)

    Article  Google Scholar 

  27. F. Verheest, Head-on collisions of electrostatic solitons in nonthermal plasmas. Phys. Rev. E. 86, 036402 (2012)

  28. S. Parveen, S. Mahmood, M. Adnan, A. Qamar, Oblique interaction of dust-ion acoustic solitons with superthermal electrons in a magnetized plasma. J. Phys. Soc. Jpn. 87, 014502 (2018)

    Article  ADS  Google Scholar 

  29. S.A. El-Tantawy, W.M. Moslem, R. Sabry, S.K. El-Labany, M. ElMetwally, R. Schlickeiser, Head-on collision of ion-acoustic solitons in an ultracold neutral plasma. Astrophys Space Sci. 350, 175–184 (2014)

    Article  ADS  Google Scholar 

  30. M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes. Phys Plasmas 24, 072901 (2017)

    Article  ADS  Google Scholar 

  31. R. Hirota, The Direct Method in the Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Hafez.

Appendix

Appendix

$$ \frac{\partial {n}_i^{(2)}}{\partial \tau }-{V}_p\ \left(\frac{\partial }{\partial \xi }-\frac{\partial }{\partial \eta}\right){n}_i^{(4)}+\left(1-\alpha \right)\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right){u}_i^{(4)}+\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right)\left[{n}_i^{(2)}\ {u}_i^{(2)}\right]+{V}_{p\kern0.5em }\left(\frac{\partial {P}_0}{\partial \eta }-\frac{\partial {P}_0}{\partial \xi}\right)\frac{\partial {n}_i^{(2)}}{\partial \xi }+\left(1-\alpha \right)\left(\frac{\partial {P}_0}{\partial \eta }+\frac{\partial {P}_0}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \xi }+{V}_{p\kern0.5em }\left(\frac{\partial {Q}_0}{\partial \eta }-\frac{\partial {Q}_0}{\partial \xi}\right)\frac{\partial {n}_i^{(2)}}{\partial \eta }+\left(1-\alpha \right)\left(\frac{\partial {Q}_0}{\partial \eta }+\frac{\partial {Q}_0}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \eta }=0\kern0.5em $$
(43)
$$ \frac{\partial {u}_i^{(2)}}{\partial \tau }-{V}_p\ \left(\frac{\partial }{\partial \xi }-\frac{\partial }{\partial \eta}\right){u}_i^{(4)}+\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right){\varphi}^{(4)}+\frac{1}{2}\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right){\left\{{u}_i^{(2)}\right\}}^2+{V}_{p\kern0.5em }\left(\frac{\partial {P}_0}{\partial \eta }-\frac{\partial {P}_0}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \xi }+{V}_{p\kern0.5em }\left(\frac{\partial {Q}_0}{\partial \eta }-\frac{\partial {Q}_0}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \eta }+\left(\frac{\partial {P}_0}{\partial \eta }+\frac{\partial {P}_0}{\partial \xi}\right)\frac{\partial {\varphi}^{(2)}}{\partial \xi }+\left(\frac{\partial {Q}_0}{\partial \eta }+\frac{\partial {Q}_0}{\partial \xi}\right)\frac{\partial {\varphi}^{(2)}}{\partial \eta }=0 $$
(44)
$$ \frac{\partial^2{\varphi}^{(2)}}{\partial {\xi}^2}\kern0.75em +2\frac{\partial^2{\varphi}^{(2)}}{\partial \xi \partial \eta }+\frac{\partial^2{\varphi}^{(2)}}{\partial {\eta}^2}\kern0.5em =\frac{3}{2}\left(1+\alpha {\sigma}_F\right){\varphi}^{(4)}+\frac{3}{8}\left(1-\alpha {\sigma}_F^2\right)\ {\left\{{\varphi}^{(2)}\right\}}^2-{n}_i^{(4)} $$
(45)
$$ R=\iint \frac{\partial }{\partial \xi}\left\{\left(C\frac{\partial {P}_0}{\partial \eta }-D{\varphi}_{\eta}^{(2)}\right)\frac{\partial {\varphi}_{\xi}^{(2)}}{\partial \xi}\right\} d\xi d\eta -\iint \frac{\partial }{\partial \eta}\left\{\left(C\frac{\partial {Q}_0}{\partial \xi }-D{\varphi}_{\xi}^{(2)}\right)\frac{\partial {\varphi}_{\eta}^{(2)}}{\partial \eta}\right\} d\xi d\eta +\iint \frac{\partial^2}{\partial \xi \partial \eta}\left\{\widehat{\varphi^{(4)}}+\left(\frac{3\left(1-\alpha {\sigma}_F^2\right){V}_p^2}{8\left(1-\alpha \right)}-\frac{1}{2{V}_p^2}\right){\varphi}_{\xi}^{(2)}{\varphi}_{\eta}^{(2)}\right\} d\xi d\eta $$
(46)
$$ -{V}_p\ \left(\frac{\partial }{\partial \xi }-\frac{\partial }{\partial \eta}\right){n}_i^{(5)}+\left(1-\alpha \right)\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right){u}_i^{(5)}+{V}_{p\kern0.5em }\left(\frac{\partial {P}_1}{\partial \eta }-\frac{\partial {P}_1}{\partial \xi}\right)\frac{\partial {n}_i^{(2)}}{\partial \xi }+{V}_{p\kern0.5em }\left(\frac{\partial {Q}_1}{\partial \eta }-\frac{\partial {Q}_1}{\partial \xi}\right)\frac{\partial {n}_i^{(2)}}{\partial \eta }+\left(1-\alpha \right)\left(\frac{\partial {P}_1}{\partial \eta }+\frac{\partial {P}_1}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \xi }+\left(1-\alpha \right)\left(\frac{\partial {Q}_1}{\partial \eta }+\frac{\partial {Q}_1}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \eta }=0 $$
(47)
$$ -{V}_p\ \left(\frac{\partial }{\partial \xi }-\frac{\partial }{\partial \eta}\right){u}_i^{(5)}+\left(\frac{\partial }{\partial \xi }+\frac{\partial }{\partial \eta}\right){\varphi}^{(5)}+{V}_{p\kern0.5em }\left(\frac{\partial {P}_1}{\partial \eta }-\frac{\partial {P}_1}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \xi }+{V}_{p\kern0.5em }\left(\frac{\partial {Q}_1}{\partial \eta }-\frac{\partial {Q}_1}{\partial \xi}\right)\frac{\partial {u}_i^{(2)}}{\partial \eta }+\left(\frac{\partial {P}_1}{\partial \eta }+\frac{\partial {P}_1}{\partial \xi}\right)\frac{\partial {\varphi}^{(2)}}{\partial \xi }+\left(\frac{\partial {Q}_1}{\partial \eta }+\frac{\partial {Q}_1}{\partial \xi}\right)\frac{\partial {\varphi}^{(2)}}{\partial \eta }=0 $$
(48)
$$ {n}_i^{(5)}=\frac{3}{2}\left(1+\alpha {\sigma}_F\right){\varphi}^{(5)} $$
(49)

Simplifying Eqs. (47), (48), and (49), one obtains

$$ \iint 2\left(1-\alpha \right)\frac{\partial {P}_1}{\partial \eta}\frac{\partial {\varphi}_{\xi}^{(2)}}{\partial \xi } d\xi d\eta +..=0,\kern0.5em $$
(50)

which is indicated that the remaining part R as in Eq. (46) would be generated secularities. Hence, the remaining part R must be vanished to reduce the secularities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, M.G. Face to Face Collisions of Ion Acoustic Multi-Solitons and Phase Shifts in a Dense Plasma. Braz J Phys 49, 221–231 (2019). https://doi.org/10.1007/s13538-018-00620-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-00620-x

Keywords

Navigation