Skip to main content

Advertisement

Log in

Role of epicardial fat thickness for prediction of proliferative diabetic retinopathy

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Purpose

Plenty of factors including inflammation are responsible for development of diabetic retinopathy (DR). Epicardial fat produces adipokines, cytokines and inflammatory products. Monocyte count to high density lipoprotein (HDL) ratio (MHR) has been recently suggested as an inflammatory marker.

Methods

Epicardial fat thickness (EFT) and MHR were analyzed in 36 diabetics without DR (NDR), 35 diabetics with proliferative DR (PDR) and 41 diabetics with nonproliferative DR patients (nonPDR).

Results

Monocyte counts, HDL, mean MHR and EFT values of NDR, nonPDR and PDR groups were significantly different. One-way analysis of variance test with post hoc Tukey test revealed that the significance of differences in MHR and EFT were dependent on the differences between NDR and PDR (p<0.001 for both) and nonPDR and PDR groups (p<0.001 and p=0.001). The differences between NDR and nonPDR (p=0.81 and p=0.06) were not significant. MHR and EFT were significantly positively correlated with PDR (r=0.453, p<0.001 and r=0.394, p<0.001) and negatively correlated with NDR (r=−0.256, p=0.006 and r= −0.380, p<0.001). Only EFT was found to be independently associated with PDR (p=0.002, 95% CI: OR: 1.643 (1.206–2.237)). An EFT value of >5.90 mm classified the presence of PDR with a sensitivity 74% and specificity of 61% (AUC = 0.750, 95% CI, 0.658–0.843), and a MHR value of >12.8 ratio classified the presence of PDR with a sensitivity of 83% and a specificity of 79% (AUC = 0.811, 95% CI, 0.728–0.893).

Conclusion

We suggest that MHR and EFT were significantly increased in proliferative DR, and increased EFT may predict the presence of PDR in type 2 DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rana JS, Dunning A, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, et al. Differences in prevalence, extent, severity, and prognosis of coronary artery disease among patients with and without diabetes undergoing coronary computed tomography angiography: results from 10,110 individuals from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes): An International Multicenter Registry. Diabetes Care. 2012;35(8):1787–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosenson R, Fioretto P, Dodson P. Does microvascular disease predict macrovascular events in type 2 diabetes? Atherosclerosis. 2011;218(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  3. Yamada M, Hiratsuka Y, Roberts CB, Pezzullo ML, Yates K, Takano S, et al. Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthalmic Epidemiol. 2010;17(1):50–7.

    Article  PubMed  Google Scholar 

  4. Rübsam Anne, Parikh Sonia, Fort Patrice E. Role of inflammation in diabetic retinopathy. Int J Mol Sci. 2018;19(4):942. https://doi.org/10.3390/ijms19040942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.

    Article  PubMed  Google Scholar 

  6. Ancuta P, Wang J, Gabuzda D. CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. J Leukoc Biol. 2006;80(5):1156–64.

    Article  CAS  PubMed  Google Scholar 

  7. Li X-P, Zhao S-P, Zhang X-Y, Liu L, Gao M, Zhou Q-C. Protective effect of high-density lipoprotein on endothelium-dependent vasodilatation. Int J Cardiol. 2000;73(3):231–6.

    Article  CAS  PubMed  Google Scholar 

  8. Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta Lipids Lipid Metab. 1990;1044(2):275–83.

    Article  CAS  Google Scholar 

  9. Cetin MS, Cetin EHO, Kalender E, Aydin S, Topaloglu S, Kisacik HL, et al. Monocyte to HDL cholesterol ratio predicts coronary artery disease severity and future major cardiovascular adverse events in acute coronary syndrome. Heart Lung Circ. 2016;25(11):1077–86.

    Article  PubMed  Google Scholar 

  10. Ganjali S, Gotto AM Jr, Ruscica M, Atkin SL, Butler AE, Banach M, et al. Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J Cell Physiol. 2018;233(12):9237–46.

    Article  CAS  PubMed  Google Scholar 

  11. Buse JB, Wexler DJ, Tsapas A, et al. 2019 Update to: Management of hyperglycemia in type 2 diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–93.

    Article  CAS  PubMed  Google Scholar 

  12. Wilkinson C, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.

    Article  CAS  PubMed  Google Scholar 

  13. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88(11):5163–8.

    Article  CAS  PubMed  Google Scholar 

  14. Grossmann V, Schmitt VH, Zeller T, Panova-Noeva M, Schulz A, Laubert-Reh D, et al. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care. 2015;38(7):1356–64.

    Article  CAS  PubMed  Google Scholar 

  15. Afzal N, Zaman S, Shahzad F, Javaid K, Zafar A, Nagi AH. Immune mechanisms in type-2 diabetic retinopathy. J Pak Med Assoc. 2015;65(2):159–63.

    PubMed  Google Scholar 

  16. Varma R, Macias GL, Torres M, Klein R, Peña FY, Azen SP, et al. Biologic risk factors associated with diabetic retinopathy: The Los Angeles Latino Eye Study. Ophthalmology. 2007;114(7):1332–40.

    Article  PubMed  Google Scholar 

  17. Powell EU, Field R. Diabetic retinopathy and rheumatoid arthritis. Lancet. 1964;284(7349):17–8.

    Article  Google Scholar 

  18. Sasongko M, Wong T, Jenkins A, Nguyen T, Shaw J, Wang J. Circulating markers of inflammation and endothelial function, and their relationship to diabetic retinopathy. Diabet Med. 2015;32(5):686–91.

    Article  CAS  PubMed  Google Scholar 

  19. Kremen J, Dolinkova M, Krajickova J, Blaha J, Anderlova K, Lacinova Z, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. J Clin Endocrinol Metab. 2006;91(11):4620–7.

    Article  CAS  PubMed  Google Scholar 

  20. Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011;43(12):1651–4.

    Article  CAS  PubMed  Google Scholar 

  21. Verhagen SN, Visseren FL. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis. 2011;214:3–10.

    Article  CAS  PubMed  Google Scholar 

  22. Turan E, Kırboğa K, Turan Y, Göçmen AY. Pentraxin 3 and epicardial fat thickness are independently associated with diabetic retinopathy in diabetic patients. Int J Diabetes Dev Ctries. 2019;39:499–505.

    Article  CAS  Google Scholar 

  23. Akbas EM, Demirtas L, Ozcicek A, Timuroglu A, Bakirci EM, Hamur H, et al. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. Int J Clin Exp Med. 2014;7(7):1794–801.

    PubMed  PubMed Central  Google Scholar 

  24. Bolayir A, Gokce SF, Cigdem B, Bolayır HA, Yildiz OK, Bolayir E, et al. Monocyte/high-density lipoprotein ratio predicts the mortality in ischemic stroke patients. Neurol Neurochir Pol. 2018;52:150-5.25.

    Article  PubMed  Google Scholar 

  25. Ucar FM. A potential marker of bare metal stent restenosis: monocyte count-to-HDL cholesterol ratio. BMC Cardiovasc Disord. 2016;16:186.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Lui K, Pei L, Gao Y, Zhao L, Sun S, et al. Monocyte-to-high-density lipoprotein ratio predicts the outcome of acute ıschemic stroke. J Atheroscler Thromb. 2020;27(9):959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uslu AU, Sekin Y, Tarhan G, Canakcı N, Gunduz M, Karagulle M. Evaluation of monocyte to high-density lipoprotein cholesterol ratio in the presence and severity of metabolic syndrome. Clin Appl Thromb Hemost. 2018;24(5):828–33.

    Article  CAS  PubMed  Google Scholar 

  28. Ancuta P, Wang J, Gabuzda D. CD16+ monocytes produce IL-6, CCL2, and matrix metalloproteinase-9 upon interaction with CX3CL1-expressing endothelial cells. J Leukoc Biol. 2006;80:1156–64.

    Article  CAS  PubMed  Google Scholar 

  29. Tong PC, Lee K-F, So W-Y, et al. White blood cell count isassociated with macro- and microvascular complications in chinese patients with type 2 diabetes. Diabetes Care. 2004;27:216–22.

    Article  PubMed  Google Scholar 

  30. Murphy AJ, Woollard KJ. High-density lipoprotein: a potent inhibitor of inflammation. Clin Exp Pharmacol Physiol. 2010;37:710–8.

    Article  CAS  PubMed  Google Scholar 

  31. Acikgoz N, Kurtoğlu E, Yagmur J, Kapicioglu Y, Cansel M, Ermis N. Elevated monocyte to high-density lipoprotein cholesterol ratio and endothelial dysfunction in Behçet disease. Angiology. 2018;69(1):65–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept—A.S., I.S.,T.D.,M.C.; design—A.S.,I.S.,Y.G.,Y.A.; supervision—F.U.,U.D.,Y.G.; fundings—A.S.,T.D.,M.C.; materials—T.D.,Y.A.,F.U.; data collection and/or processing—U.D.,I.S.,M.C.,Y.A.; analysis and/or interpretation—A.S.,I.S.,Y.G.,M.C.; literature review—A.S.,I.S.,U.D.,M.C.; writing—Y.A.,I.S.,F.U.,U.D.; critical review—A.S.,İ.S.,Y.G.,F.U.

Corresponding author

Correspondence to Isa Sincer.

Ethics declarations

Ethical consent

After obtaining institutional consent and ethical approval (07.03.2019; application number: 2019/59), diabetic patients diagnosed to have DR were examined by transthoracic echocardiography in Cardiology clinic of our institution between April 2019 and August 2020 in this prospective cohort study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abide, S., Tuba, K., Yunus, A. et al. Role of epicardial fat thickness for prediction of proliferative diabetic retinopathy. Int J Diabetes Dev Ctries 43, 20–24 (2023). https://doi.org/10.1007/s13410-021-01040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-01040-5

Keywords

Navigation