Skip to main content

Advertisement

Log in

Shotgun proteomic analysis using human serum from type 2 diabetes mellitus patients

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes mellitus (T2DM), also known as adult-onset diabetes or noninsulin-dependent diabetes mellitus, is characterized by hyperglycemia and insulin resistance. Protein biomarker screening plays an essential role in different diseases. Proteomic methods such as MALDI-TOF based peptide mass fingerprinting, LC-MS/MS based peptide sequencing, and multidimensional liquid phase chromatography (MDLC) coupled with tandem mass spectrometry (MS) shotgun proteomics are used to identify biomarkers.

Methods

In this study, we used a MDLC coupled with tandem MS shotgun proteomic method to demonstrate protein quantitation results by comparing human serum samples from T2DM patients with those of healthy subjects. We utilized quantitative techniques, dimethyl labeling, MDLC by hydrophilic interaction liquid chromatography separated column, and reverse-phase high-performance liquid chromatography coupled with tandem MS to identify proteins with high potential to be T2DM biomarker candidates.

Results

Identified candidates included vitamin D–binding protein, apolipoprotein B-100, apolipoprotein A2, apolipoprotein A1, transthyretin, Ig heavy-chain V–III region BRO, antithrombin-3, fibrinogen gamma chains, fibrinogen alpha chains, and alpha-1-antitrypsin. In addition, we also generated relative protein networks using STRING bioinformatic software.

Conclusion

These potential biomarker candidates might be verified by further experiments such as an ELISA assay or multiple reaction monitoring MS screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gardner D, Shoback D. Greenspan’s basic & clinical endocrinology. New York: McGraw-Hill Professional; 2011.

    Google Scholar 

  2. Lu JF, Hsiao WC. Does universal health insurance make health care unaffordable? Lessons from Taiwan Health Aff (Millwood). 2003;22:77–88.

    Article  PubMed  Google Scholar 

  3. Hwang SJ, Tsai JCChen HC. Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology (Carlton). 2010;15(Suppl 2):3–9.

    Article  PubMed  Google Scholar 

  4. Qaseem A, Humphrey LL, Sweet DE, et al. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2012;156:218–31.

    Article  PubMed  Google Scholar 

  5. Miura A, Yamagata K, Kakei M, et al. Hepatocyte nuclear factor-4alpha is essential for glucose-stimulated insulin secretion by pancreatic beta-cells. J Biol Chem. 2006;281:5246–57.

    Article  CAS  PubMed  Google Scholar 

  6. Wu Y, Li H, Loos RJ, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57:2834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christian P, Stewart CP. Maternal micronutrient deficiency, fetal development, and the risk of chronic disease. J Nutr. 2010;140:437–45.

    Article  CAS  PubMed  Google Scholar 

  8. Herder C, Roden M. Genetics of type 2 diabetes: pathophysiologic and clinical relevance. Eur J Clin Invest. 2011;41:679–92.

    Article  PubMed  Google Scholar 

  9. Mao P, Wang D. Top-down proteomics of a drop of blood for diabetes monitoring. J Proteome Res. 2014;13:1560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhonsle HS, Korwar AM, Chougale AD, et al. Proteomic study reveals downregulation of apolipoprotein A1 in plasma of poorly controlled diabetes: a pilot study. Mol Med Rep. 2013;7:495–8.

    Article  CAS  PubMed  Google Scholar 

  11. Scott EM, Carter AMFindlay JB. The application of proteomics to diabetes. Diab Vasc Dis Res. 2005;2:54–60.

    Article  PubMed  Google Scholar 

  12. Riaz S, AlamSSAkhtar MW. Proteomic identification of human serum biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal. 2010;51:1103–7.

    Article  CAS  PubMed  Google Scholar 

  13. O’Seaghdha CM, Hwang SJ, Larson MG, et al. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol. 2013;24:1880–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiou SH, Wu CY. Clinical proteomics: current status, challenges, and future perspectives. Kaohsiung J Med Sci. 2011;27:1–14.

    Article  PubMed  Google Scholar 

  16. Kline KG, Finney GLWuCC. Quantitative strategies to fuel the merger of discovery and hypothesis-driven shotgun proteomics. Brief Funct Genomic Proteomic. 2009;8:114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yassine H, Borges CR, Schaab MR, et al. Mass spectrometric immunoassay and MRM as targeted MS-based quantitative approaches in biomarker development: potential applications to cardiovascular disease and diabetes. Proteomics Clin Appl. 2013;7:528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hsu JL, Huang SY, Chow NH, et al. Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem. 2003;75:6843–52.

    Article  CAS  PubMed  Google Scholar 

  20. Kuo CJ, Liang SS, Hsi E, et al. Quantitative proteomics analysis of varicose veins: identification of a set of differentially expressed proteins related to ATP generation and utilization. Kaohsiung J Med Sci. 2013;29:594–605.

    Article  PubMed  Google Scholar 

  21. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, et al. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Mol Cell Proteomics. 2011;10:O111-011064.

    Article  PubMed Central  Google Scholar 

  22. Olsen JV, de Godoy LM, Li G, et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics. 2005;4:2010–21.

    Article  CAS  PubMed  Google Scholar 

  23. Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808-815.

    Article  CAS  PubMed  Google Scholar 

  24. Motoyama A, Yates JR 3rd. Multidimensional LC separations in shotgun proteomics. Anal Chem. 2008;80:7187–93.

    Article  CAS  PubMed  Google Scholar 

  25. McDonald WH, Yates JR 3rd. Shotgun proteomics and biomarker discovery. Dis Markers. 2002;18:99–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang SS, Liao WT, Kuo CJ, et al. Phthalic acid chemical probes synthesized for protein-protein interaction analysis. Int J Mol Sci. 2013;14:12914–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ficarro SB, Zhang Y, Carrasco-Alfonso MJ, et al. Online nanoflow multidimensional fractionation for high efficiency phosphopeptide analysis. Molecular & Cellular Proteomics. 2011;10:O111-011064.

    Article  Google Scholar 

  28. Safarpour P, Daneshi-Maskooni M, Vafa M, et al. Vitamin D supplementation improves SIRT1, irisin, and glucose indices in overweight or obese type 2 diabetic patients: a double-blind randomized placebo-controlled clinical trial. BMC Fam Pract. 2020;21:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hajhashemy Z, Shahdadian F, Moslemi E, et al. Serum vitamin D levels in relation to metabolic syndrome: a systematic review and dose-response meta-analysis of epidemiologic studies. Obes Rev. 2021;22:e13223.

    CAS  PubMed  Google Scholar 

  30. Wang GS, Li YQ, Li LL, et al. Association of the vitamin D binding protein polymorphisms with the risk of type 2 diabetes mellitus: a meta-analysis. Bmj Open. 2014;4(11). https://doi.org/10.1136/bmjopen-2014-005617.

  31. Krishnaswamy R, ChawangSKKrishnaswamy P. Evaluation of vitamin D status in suspected cases of metabolic syndrome. Int J Res Med Sci. 2019;7:1515–9.

    Article  Google Scholar 

  32. Pullakhandam R, Palika R, Ghosh S, et al. Contrasting effects of type 2 and type 1 diabetes on plasma RBP4 levels: the significance of transthyretin. IUBMB Life. 2012;64:975–82.

    Article  CAS  PubMed  Google Scholar 

  33. Park SS, Rodriguez Ortega R, Agudelo CW, et al. Therapeutic potential of alpha-1 antitrypsin in type 1 and type 2 diabetes mellitus. Medicina (Kaunas). 2021;57:397.

    Article  PubMed  Google Scholar 

  34. Zheng N, Shi X, Chen X, et al. Associations between inflammatory markers, hemostatic markers, and microvascular complications in 182 Chinese patients with type 2 diabetes mellitus. Lab Med. 2015;46:214–20.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the funding support from a grant of the Ministry of Science and Technology (NSC 102-2113-M-037-013-MY2), Taipei, Taiwan, and a grant from the cooperation of the National Sun Yat-Sen University and Kaohsiung Medical University (NSYSUKMU 103-P010). We are thankful for the assistance in tandem MS of the Center for Resources, Research and Development (CRRD) of Kaohsiung Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Shin Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

All serum samples and procedures were approved by the clinical research ethics committee at Kaohsiung Medical University Hospital.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RN., Shen, PT., Lin, H.YH. et al. Shotgun proteomic analysis using human serum from type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 43, 145–154 (2023). https://doi.org/10.1007/s13410-021-01038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-021-01038-z

Keywords

Navigation