Skip to main content
Log in

SIRT1 functional polymorphisms (rs12778366, rs3758391) as genetic biomarkers of susceptibility to type 2 diabetes mellitus in Iranians: a case-control study and computational analysis

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Introduction

Genetic background is an important risk factor for type 2 diabetes mellitus (T2DM). We designed this study to examine the role of rs12778366 and rs3758391, two functional SIRT1 gene polymorphisms, on the risk of T2DM in an Iranian population.

Material and methods

In this case-control study, a total of 813 subjects were enrolled. SNPs were genotyped via polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Multiple computational analyses were also performed to examine the potential effects of the studied variants.

Results and conclusion

We found a significant association between rs12778366 polymorphism and an enhanced risk of T2DM under allelic C vs. T (OR = 1.50), codominant TC vs.TT (OR = 1.86), dominant CC + TC vs. TT (OR = 1.65), and over-dominant TC vs. CC + TT (OR = 1.80) genetic models. In contrast, codominant CT vs. CC (OR = 0.54) and dominant CT + TT vs. CC (OR = 0.68) models of rs3758391 polymorphism were correlated with decreased risk of T2DM. Compared to the TC haplotype, we have found that the CC combination significantly enhanced the risk of T2DM by 1.86-fold. Computational analyses indicated that the C allele of rs12778366 might disrupt the binding site of the CEBP transcription factor. SIRT1 rs12778366 and rs3758391 polymorphisms might be associated with T2DM susceptibility in our population. Replications in different races with larger sample sizes are necessary to yield more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011;378(9786):169–81.

    Article  PubMed  Google Scholar 

  2. Qiu J, Moore JH, Darabos C. Studying the genetics of complex disease with ancestry-specific human phenotype networks: the case of type 2 diabetes in East Asian populations. Genet Epidemiol. 2016;40(4):293–303.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Regidor E, Albaladejo R, Mateo A, de la Fuente L, Barrio G, Ortega P. Macroeconomic fluctuations, changes in lifestyles and mortality from diabetes: a quasiexperimental study. J Epidemiol Community Health. 2019;73(4):317–23.

    Article  PubMed  Google Scholar 

  4. Raccah D, Bretzel RG, Owens D, Riddle M. When basal insulin therapy in type 2 diabetes mellitus is not enough—what next? Diabetes Metab Res Rev. 2007;23(4):257–64.

    Article  CAS  PubMed  Google Scholar 

  5. Das UN. A defect in the activity of Δ6 and Δ5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fat Acids. 2005;72(5):343–50.

    Article  CAS  Google Scholar 

  6. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106(2):171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu F, Cui L, Wang C, Ba Y, Wang L, Li J, et al. The genetic polymorphisms in vitamin D receptor and the risk of type 2 diabetes mellitus: an updated meta-analysis. Asia Pac J Clin Nutr. 2016;25(3):614.

    CAS  PubMed  Google Scholar 

  8. Gao K, Wang J, Li L, Zhai Y, Ren Y, You H, et al. Polymorphisms in four genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and their correlation with type 2 diabetes mellitus in Han Chinese in Henan province, China. Int J Environ Res Public Health. 2016;13(3):260.

    Article  PubMed Central  CAS  Google Scholar 

  9. Mergani A, Mansour AA, Askar T, Zahran RN, Mustafa AM, Mohammed MA, et al. Glutathione S-transferase Pi-Ile 105 Val polymorphism and susceptibility to T2DM in population from Turabah region of Saudi Arabia. Biochem Genet. 2016;54(4):544–51.

    Article  CAS  PubMed  Google Scholar 

  10. Poodineh M, Saravani R, Mirhosseini M, Sargazi S. Association of two methylenetetrahydrofolate Reductase polymorphisms (rs1801133, rs1801131) with the risk of type 2 diabetes in south-east of Iran. Rep Biochem Mol Biol. 2019;8(2):178–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Han J, Wei M, Wang Q, Li X, Zhu C, Mao Y, et al. Association of genetic variants of SIRT1 with type 2 diabetes mellitus. Gene Express. 2015;16(4):177–85.

    Article  CAS  Google Scholar 

  12. Galavi H, Noorzehi N, Saravani R, Sargazi S, Mollashahee-Kohkan F, Shahraki H. Association study of SREBF-2 gene polymorphisms and the risk of type 2 diabetes in a sample of Iranian population. Gene. 2018;660:145–50.

    Article  CAS  PubMed  Google Scholar 

  13. Galavi H, Mollashahee-Kohkan F, Saravani R, Sargazi S, Noorzehi N, Shahraki H. HHEX gene polymorphisms and type 2 diabetes mellitus: a case-control report from Iran. J Cell Biochem. 2019;120(10):16445–51.

    Article  CAS  PubMed  Google Scholar 

  14. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng Y, Yang K, Wang F, Zhou L, Hu Y, Tang M, et al. The glucagon like peptide 1 analogue, exendin-4, attenuates oxidative stress-induced retinal cell death in early diabetic rats through promoting Sirt1 and Sirt3 expression. Exp Eye Res. 2016;151:203–11.

    Article  CAS  PubMed  Google Scholar 

  16. Dong Y, Guo T, Traurig M, Mason CC, Kobes S, Perez J, et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol Genet Metab. 2011;104(4):661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitada M, Koya D. SIRT1 in type 2 diabetes: mechanisms and therapeutic potential. Diabetes Metab J. 2013;37(5):315–25.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Braidy N, Guillemin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PloS one. 2011;6(4):e19194.

  19. Barazzoni R, Zanetti M, Cappellari GG, Semolic A, Boschelle M, Codarin E, et al. Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)–nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia. 2012;55(3):773–82.

    Article  CAS  PubMed  Google Scholar 

  20. Kim B-C, Kim W-Y, Park D, Chung W-H, Shin KS, Bhak J. SNP@ Promoter: a database of human SNPs (single nucleotide polymorphisms) within the putative promoter regions. InBMC bioinformatics. BioMed Central. 2008;9(S1):S2.

  21. Han J, Wei M, Wang Q, Li X, Zhu C, Mao Y, et al. Association of genetic variants of SIRT1 with type 2 diabetes mellitus. Gene Expr. 2015;16(4):177–85. https://doi.org/10.3727/105221615x14399878166195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherry ST, Ward M, Sirotkin K. dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677–9.

    CAS  PubMed  Google Scholar 

  23. Tavakoli Faradonbeh R, Zakerkish M, Akhormeh AK, Mohammadtaghvaei N, Jalali MT, Yaghooti H. Association of the rs3758391 polymorphism in the SIRT1 gene with diabetic nephropathy and decreased estimated glomerular filtration rate (GFR) in a population from southwest Iran. Int J Diabetes Dev Ctries. 2020;40:99–105.

  24. Rai E, Sharma S, Kaul S, Jain K, Matharoo K, Bhanwer AS, et al. The interactive effect of SIRT1 promoter region polymorphism on type 2 diabetes susceptibility in the North Indian population. PloS one. 2012;7(11):e48621.

  25. Cruz M, Valladares-Salgado A, Garcia-Mena J, Ross K, Edwards M, Angeles-Martinez J, et al. Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico city. Diabetes Metab Res Rev. 2010;26(4):261–70.

    Article  CAS  PubMed  Google Scholar 

  26. Peng Y, Zhang G, Tang H, Dong L, Gao C, Yang X, et al. Influence of SIRT1 polymorphisms for diabetic foot susceptibility and severity. Medicine. 2018;97(28):e11455.

  27. Moazezi Z, Qujeq D. Berberis fruit extract and biochemical parameters in patients with type II diabetes. Jundishapur J Nat Pharm Prod. 2014;9(2):e13490.

  28. MWer S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  Google Scholar 

  29. Mashhadi MA, Arbabi N, Sargazi S, Kazemi-Lomedasht F, Jahantigh D, Miri-Moghaddam E. Association of VEGFA gene polymorphisms with susceptibility to non-Hodgkin's lymphoma: evidences from population-based and in silico studies. Gene Rep. 2020;20:7

  30. Farré D, Roset R, Huerta M, Adsuara JE, Roselló L, Albà MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31(13):3651–3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grabe N. AliBaba2: context specific identification of transcription factor binding sites. In silico Biol. 2002;2(1):S1–S15.

    PubMed  Google Scholar 

  32. Sloutskin A, Danino YM, Orenstein Y, Zehavi Y, Doniger T, Shamir R, et al. ElemeNT: a computational tool for detecting core promoter elements. Transcription. 2015;6(3):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yong Y, Lin H. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–8.

    Article  Google Scholar 

  35. Gæde P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving H-H, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the steno-2 randomised trial. Diabetologia. 2016;59(11):2298–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tancredi M, Rosengren A, Svensson A-M, Kosiborod M, Pivodic A, Gudbjörnsdottir S, et al. Excess mortality among persons with type 2 diabetes. N Engl J Med. 2015;373(18):1720–32.

    Article  CAS  PubMed  Google Scholar 

  37. Acosta JR, Douagi I, Andersson DP, Bäckdahl J, Rydén M, Arner P, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59(3):560–70.

    Article  CAS  PubMed  Google Scholar 

  38. Kovanen L, Donner K, Partonen T. SIRT1 polymorphisms associate with seasonal weight variation, depressive disorders, and diastolic blood pressure in the general population. PLoS One. 2015;10(10):e0141001.

  39. Naqvi A, Hoffman TA, DeRicco J, Kumar A, Kim C-S, Jung S-B, et al. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression. Hum Mol Genet. 2010;19(21):4123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rose JH, O'Toole EE, Einstadter D, Love TE, Shenko CA, Dawson NV. Patient age, well-being, perspectives, and care practices in the early treatment phase for late-stage cancer. J Gerontol Ser A Biol Med Sci. 2008;63(9):960–8.

    Article  Google Scholar 

  41. Zillikens MC, van Meurs JB, Sijbrands EJ, Rivadeneira F, Dehghan A, van Leeuwen JP, et al. SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin. Free Radic Biol Med. 2009;46(6):836–41.

    Article  CAS  PubMed  Google Scholar 

  42. Chang H-C, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25(3):138–45.

    Article  CAS  PubMed  Google Scholar 

  43. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature. 2005;434(7029):113–8.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q-J, Wang Z, Chen H-z, Zhou S, Zheng W, Liu G, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80(2):191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lovaas JD, Zhu L, Chiao CY, Byles V, Faller DV, Dai Y. SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells. Prostate. 2013;73(5):522–30.

    Article  CAS  PubMed  Google Scholar 

  46. Morkūnaitė G, Vilkevičiūtė A, Glebauskienė B, Kriaučiūnienė L, Liutkevičienė R. Does SIRT1 gene polymorphisms play a role in pituitary adenoma recurrence?. InVita Scientia: International conference “Vita Scientia”: conference book: 2018;48–49.

  47. Sarumaru M, Watanabe M, Inoue N, Hisamoto Y, Morita E, Arakawa Y, et al. Association between functional SIRT1 polymorphisms and the clinical characteristics of patients with autoimmune thyroid disease. Autoimmunity. 2016;49(5):329–37.

    Article  CAS  PubMed  Google Scholar 

  48. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, de Oliveira RM, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004;429(6993):771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Nakagawa Y, Wang Y, Sakurai R, Tripathi PV, Lutfy K, et al. Increased glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1 expression in hepatocytes may contribute to the phenotype of type 2 diabetes in db/db mice. Diabetes. 2005;54(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  50. Delaunay F, Khan A, Cintra A, Davani B, Ling Z-C, Andersson A, et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest. 1997;100(8):2094–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verdeguer F, Blättler SM, Cunningham JT, Hall JA, Chim H, Puigserver P. Decreased genetic dosage of hepatic Yin Yang 1 causes diabetic-like symptoms. Mol Endocrinol. 2014;28(3):308–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Maryam Piri and Dr. Hamed Taheri, the two diabetes specialist physicians, for their assistance.

Funding

This work was financially supported by a dissertation grant (M.Sc. thesis of Mohammad Bagher Sadeghi project no. 7949) from Zahedan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Saravani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical considerations

Written informed consent was taken from all participants for obtaining a sample. The local ethics committee of Zahedan University of Medical Sciences (Zahedan, Iran) approved the present study (Ethical code: IR.ZAUMS.REC.1395.131). This experiment was carried out in compliance with the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M.B., Nakhaee, A., Saravani, R. et al. SIRT1 functional polymorphisms (rs12778366, rs3758391) as genetic biomarkers of susceptibility to type 2 diabetes mellitus in Iranians: a case-control study and computational analysis. Int J Diabetes Dev Ctries 41, 447–455 (2021). https://doi.org/10.1007/s13410-020-00898-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-020-00898-1

Keywords

Navigation