Skip to main content

Advertisement

Log in

In vivo study revealed pro-tumorigenic effect of CMTM3 in hepatocellular carcinoma involving the regulation of peroxisome proliferator-activated receptor gamma (PPARγ)

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

To clarify the ambiguity of the function of CMTM3 in the development of hepatocellular carcinoma (HCC) and explore its molecular mechanism.

Methods

The Cmtm3-KO C57BL/6 mouse strain was established using CRISPR-Cas9. Acute liver damage and HCC models were induced by peritoneal injection of 100 or 25 mg/kg.BW N-Nitrosodiethylamine (DEN) to male mice. Liver function and histology were evaluated by blood serum levels of AST and ALT, and HE staining. Gene and protein expression in liver tissues was investigated by RNA-seq, RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. Protein–protein interactions were studied by STRING and topological measures. The mRNA expression of CMTM3 and PPARs and patient survival were analyzed using the UALCAN database.

Results

Global knockout of Cmtm3 in KO mice was successfully confirmed. Cmtm3 knockout alleviated DEN-induced acute damage to liver histological integrity and liver function, reduced DNA damage and apoptosis, and also caused a significantly reduced number (WT: 8.7 ± 5.5 vs. KO: 2.7 ± 3.1, P = 0.0394) and total size of tumors (WT: 130.9 ± 181.8 mm2 vs. KO: 9.3 ± 11.5 mm2, P = 0.026) in the liver. Mechanistically, Cmtm3 knockout resulted in reduced expression and inactivation of Pparγ and its downstream lipid metabolism genes (e.g. Adipoq) upon DEN intoxication. CMTM3 and PPARγ were both overexpressed in HCC, and higher levels of both genes were associated with worse overall survival of HCC patients.

Conclusion

This study clarified the pro-tumorigenesis role of CMTM3 in HCC in vivo, possibly through the upregulation of PPARγ and activation of the PPAR pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. RNA-seq dataset is available at Sequence Read Archive (accession no. PRJNA850897).

Abbreviations

BP:

Biological process

CC:

Cellular component

CKLFSF:

Chemokine-like factor superfamily

CMTM3:

CKLF-like MARVEL transmembrane domain-containing member 3

CRISPR-Cas9:

Clustered regularly interspaced short palindromic repeats-associated protein 9

CYP2E1:

Cytochrome P450 2E1

DEN:

N-nitrosodiethylamine

GO:

Gene ontology

HCC:

Hepatocellular carcinoma

HE:

Hematoxylin-eosin

IHC:

Immunohistochemistry

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KO:

Knock out

KOG:

EuKaryotic Ortholog Groups

MF:

Molecular function

PCR:

Polymerase chain reaction

PPAR:

Peroxisome proliferator-activated receptor

PPI:

Protein-protein interaction

RNA-seq:

Whole transcriptome sequencing

SD:

Standard deviation

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

VEGF:

Vascular endothelial growth-factor

WT:

Wild type

References

  1. W. Han, P. Ding, M. Xu, L. Wang, M. Rui, S. Shi, Y. Liu, Y. Zheng, Y. Chen, T. Yang, D. Ma, Identification of eight genes encoding chemokine-like factor superfamily members 1–8 (CKLFSF1-8) by in silico cloning and experimental validation. Genomics 81, 609–617 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. J. Zhong, Y. Wang, X. Qiu, X. Mo, Y. Liu, T. Li, Q. Song, D. Ma, W. Han, Characterization and expression profile of CMTM3/CKLFSF3. J. Biochem. Mol. Biol. 39, 537–545 (2006)

    CAS  PubMed  Google Scholar 

  3. F.Z. Hu, Z.Z. Sheng, C.P. Qin, T. Xu, Research advances in CKLFSF-like MARVEL transmembrane domain containing member 3. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 38, 360–363 (2016)

    PubMed  Google Scholar 

  4. S. Delic, A. Thuy, M. Schulze, M.A. Proescholdt, P. Dietrich, A.K. Bosserhoff, M.J. Riemenschneider, Systematic investigation of CMTM family genes suggests relevance to glioblastoma pathogenesis and CMTM1 and CMTM3 as priority targets. Genes Chromosomes Cancer 54, 433–443 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Zhou, Z. Ma, Z. Li, H. Zhuang, C. Liu, Y. Gong, S. Huang, C. Zhang, B. Hou, CMTM3 overexpression predicts poor survival and promotes proliferation and migration in pancreatic cancer. J. Cancer. 12, 5797–5806 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Li, P. Gao, X. Dai, L. Ye, Z. Wang, H. Cheng, New prognostic biomarker CMTM3 in low grade glioma and its immune infiltration. Ann. Transl. Med. 10, 206 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. W. Yuan, T. Li, X. Mo, X. Wang, B. Liu, W. Wang, Y. Su, L. Xu, W. Han, Knockdown of CMTM3 promotes metastasis of gastric cancer via the STAT3/Twist1/EMT signaling pathway. Oncotarget 7, 29507–29519 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  8. W. Yuan, B. Liu, X. Wang, T. Li, H. Xue, X. Mo, S. Yang, S. Ding, W. Han, CMTM3 decreases EGFR expression and EGF-mediated tumorigenicity by promoting Rab5 activity in gastric cancer. Cancer Lett. 386, 77–86 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. W. Yuan, F. Wei, H. Ouyang, X. Ren, J. Hang, X. Mo, Z. Liu, CMTM3 suppresses chordoma progress through EGFR/STAT3 regulated EMT and TP53 signaling pathway. Cancer Cell Int. 21, 510 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W. Li, S. Zhang, CKLF-Like MARVEL transmembrane domain-containing member 3 (CMTM3) inhibits the proliferation and Tumorigenisis in hepatocellular carcinoma cells. Oncol. Res. 25, 285–293 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z.L. Yu, Z.M. Zhu, Comprehensive analysis of N6-methyladenosine -related long non-coding RNAs and immune cell infiltration in hepatocellular carcinoma. Bioengineered 12, 1708–1724 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N.F. Lange, V. Graf, C. Caussy, J.F. Dufour, PPAR-targeted therapies in the treatment of non-alcoholic fatty liver disease in diabetic patients. Int. J. Mol. Sci. 23, (2022)

  13. T. Chi, M. Wang, X. Wang, K. Yang, F. Xie, Z. Liao, P. Wei, PPAR-gamma modulators as current and potential cancer treatments. Front. Oncol. 11, 737776 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Yu, L. Qiao, L. Zimmermann, M.P. Ebert, H. Zhang, W. Lin, C. Rocken, P. Malfertheiner, G.C. Farrell, Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo. Hepatology 43, 134–143 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. J. Cheng, H. Nakamura, H. Imanishi, W. Liu, T. Morisaki, T. Sugiyama, T. Hada, Peroxisome proliferator-activated receptor gamma ligands, 15-deoxy-Delta 12,14-prostaglandin J2, and ciglitazone, induce growth inhibition and cell cycle arrest in hepatic oval cells. Biochem. Biophys. Res. Commun. 322, 458–464 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. K.R. Kim, H.N. Choi, H.J. Lee, H.A. Baek, H.S. Park, K.Y. Jang, M.J. Chung, W.S. Moon, A peroxisome proliferator-activated receptor gamma antagonist induces vimentin cleavage and inhibits invasion in high-grade hepatocellular carcinoma. Oncol. Rep. 18, 825–832 (2007)

    CAS  PubMed  Google Scholar 

  17. Y.I. Liu, Z. Liu, Y. Chen, K. Xu, J. Dong, PPARgamma activation reduces ischemia/reperfusion-induced metastasis in a murine model of hepatocellular carcinoma. Exp. Ther. Med. 11, 387–396 (2016)

    Article  PubMed  Google Scholar 

  18. X. Zhou, Y. Chi, Z. Dong, T. Tao, X. Zhang, W. Pan, Y. Wang, A nomogram combining PPARgamma expression profiles and clinical factors predicts survival in patients with hepatocellular carcinoma. Oncol. Lett. 21, 319 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Shu, Y. Lu, X. Pang, W. Zheng, Y. Huang, J. Li, J. Ji, C. Zhang, P. Shen, Phosphorylation of PPARgamma at Ser84 promotes glycolysis and cell proliferation in hepatocellular carcinoma by targeting PFKFB4. Oncotarget 7, 76984–76994 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  20. F. Liu, X. Liu, X. Liu, T. Li, P. Zhu, Z. Liu, H. Xue, W. Wang, X. Yang, J. Liu, W. Han, Integrated analyses of phenotype and quantitative proteome of CMTM4 deficient mice reveal its association with male fertility. Mol. Cell. Proteomics. 18, 1070–1084 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Wang, X. Liu, H.J. Chu, N. Li, L.Y. Huang, J. Chen, Centromere Protein I (CENP-I) is upregulated in gastric cancer, predicts poor prognosis, and promotes tumor cell proliferation and migration. Technol Cancer Res. Treat. 20, 15330338211045510 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Expression of PPARG in liver cancer, in The Human Protein Atlas [Internet]. https://www.proteinatlas.org/ENSG00000132170-PPARG/pathology/liver+cancer Accessed 1 May 2022

  24. D.J. Pritchard, W.H. Butler, Apoptosis–the mechanism of cell death in dimethylnitrosamine-induced hepatotoxicity. J. Pathol. 158, 253–260 (1989)

    Article  CAS  PubMed  Google Scholar 

  25. G. Jayakumar Amirtharaj, K.R. Thangaraj, A. Kini, V. Raghupathy, A. Goel, C.E. Eapen, A. Venkatraman, A.B. Pulimood, A.K. Balasubramanian, A. Ramachandran, Acute liver injury induced by low dose dimethylnitrosamine alters mediators of hepatic vascular flow. Toxicol. Rep. 1, 707–717 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Robles, in Encyclopedia of Toxicology, ed. by P. Wexler (Academic Press, 2014), p. 584–585

  27. R. Tolba, T. Kraus, C. Liedtke, M. Schwarz, R. Weiskirchen, Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab. Anim. 49, 59–69 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. I. Syed, J. Rathod, M. Parmar, G.B. Corcoran, S.D. Ray, Matrix metalloproteinase-9, -10, and -12, MDM2 and p53 expression in mouse liver during dimethylnitrosamine-induced oxidative stress and genomic injury. Mol. Cell. Biochem. 365, 351–361 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. D.J. Lees Murdock, Y.A. Barnett, C.R. Barnett, DNA damage and cytotoxicity in pancreatic beta-cells expressing human CYP2E1. Biochem. Pharmacol. 68, 523–530 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. D.L. van der Meer, T. Degenhardt, S. Vaisanen, P.J. de Groot, M. Heinaniemi, S.C. de Vries, M. Muller, C. Carlberg, S. Kersten, Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 38, 2839–2850 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  31. J. George, G. Chandrakasan, Biochemical abnormalities during the progression of hepatic fibrosis induced by dimethylnitrosamine. Clin. Biochem. 33, 563–570 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Z. Bahadoran, A. Ghasemi, P. Mirmiran, F. Azizi, F. Hadaegh, Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: A review of current data. World J. Diabetes 7, 433–440 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  33. I. Chrifi, L. Louzao-Martinez, M. Brandt, C.G.M. van Dijk, P. Burgisser, C. Zhu, J.M. Kros, D.J. Duncker, C. Cheng, CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) mediates angiogenesis by regulating cell surface availability of VE-Cadherin in endothelial adherens junctions. Arterioscler. Thromb. Vasc. Biol. 37, 1098–1114 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, T. Kadowaki, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. N. Stefan, M. Stumvoll, Adiponectin–its role in metabolism and beyond. Horm. Metab. Res. 34, 469–474 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. M. Fer, L. Corcos, Y. Dreano, E. Plee-Gautier, J.P. Salaun, F. Berthou, Y. Amet, Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J. Lipid Res. 49, 2379–2389 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. T. Han, Y. Lv, S. Wang, T. Hu, H. Hong, Z. Fu, PPARgamma overexpression regulates cholesterol metabolism in human L02 hepatocytes. J. Pharmacol. Sci. 139, 1–8 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. E. Gonzalez, T.E. McGraw, The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. J. Sanchez-Gurmaches, C. Martinez Calejman, S.M. Jung, H. Li, D.A. Guertin, Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol. Metab. 23, 60–74 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Wenling Han from Peking University Center for Human Disease Genomics, China for generously providing resources and expertise, Prof. Jian Chen from the Medical Oncology Department, Yantai Yuhuangding Hospital for providing human tissue samples, and Mr. Jun Li of the Central Laboratory, Yantai Yuhuangding Hospital for animal maintenance.

Funding

This work was supported by grants from the Shandong Medicine and Health Science and Technology Development Plan, China (Grant no.: 202102080625, 202102080643), National Natural Science Foundation of China (Grant no.: 81971438), and Natural Science Foundation of Shandong Province (Grant no.: ZR2020MH075). The funding body was not involved in any form in the design of the study and collection, analysis, interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and conceived of this study, supervised the project and critically revised the manuscript. J.W. primarily performed the investigations, analyzed data, and wrote the first draft manuscript. H.C., Z.W., X.L., Z.S., and X.W. participated in material preparation, data collection and analysis. All authors commented on previous versions of the manuscript, and have read and approved the final manuscript.

Corresponding author

Correspondence to Fujun Liu.

Ethics declarations

Research involving human participants and/or animals

This study was approved by the Ethics Committee of Yantai Yuhuangding Hospital (IRB: 2019–398). All procedures for animal care and use were carried out following the guidelines for the care and use of laboratory animals in accordance with the US NIH Guide for the Care and Use of Laboratory Animals (no. 8023, revised in 1996). All efforts were made to reduce the number of animals used and bodily suffering during the experiment.

Informed consent

Written informed consent was obtained from all participants for the use of human samples and clinical information for research and publication.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 32769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chu, H., Wang, Z. et al. In vivo study revealed pro-tumorigenic effect of CMTM3 in hepatocellular carcinoma involving the regulation of peroxisome proliferator-activated receptor gamma (PPARγ). Cell Oncol. 46, 49–64 (2023). https://doi.org/10.1007/s13402-022-00733-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00733-1

Keywords

Navigation