Skip to main content

Advertisement

Log in

Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce.

Conclusions and perspectives

In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

PCa:

Prostate cancer

PSA:

Prostate serum antigen

ADT:

Androgen deprivation therapy

AR:

Androgenic receptor

CRPC:

Castration-resistant prostate cancer

BMI:

Body mass index

TCA:

Tricarboxylic acid

OXPHOS:

Oxidative phosphorylation

MR:

Magnetic resonance

HFD:

High fat diet

α-KG:

α-Ketoglutarate

PIN:

Prostatic intraepithelial neoplasia

GLUT:

Glucose transporter

HK:

Hexokinase

OCR:

Oxygen consumption rate

ATP:

Adenosine triphosphate

SREBP:

Sterol regulatory element binding protein

ROS:

Reactive oxygen species

mTOR:

Mammalian target of rapamycin

AMPK:

AMP-activated protein kinase

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

RAPTOR:

Rapamycin-sensitive adaptor protein of mTOR

RICTOR:

Rapamycin-insensitive companion of mTOR

4E-BP1:

Eukaryotic initiation factor 4E binding protein 1

p70-S6K:

P70 S6 kinase

PDCD4:

Programmed cell death 4

PKM2:

Pyruvate kinase M2

SGK:

Serum glucose kinase

PKC:

Protein kinase C

PKB:

Protein kinase B

TSC:

Tuberous sclerosis complex

PDPK1:

Phosphoinositide-dependent protein kinase 1

PPP:

Pentose phosphate pathway

TCGA:

The Cancer Genome Atlas

FASN:

Fatty acid synthase

GDPH:

Glycerophosphate dehydrogenase

GS:

Glutamine synthetase

GLS:

Glutaminase

GAC:

Glutaminase C

GAB:

Glutaminase B

GLUD1:

Glutamate dehydrogenase 1

BPH:

Benign prostatic hyperplasia

NAA:

N-acetyl aspartate

NAAG:

N-acetyl aspartyl glutamate

GOT1:

Aspartate aminotransferase/glutamic-oxaloacetic transaminase 1

IDH:

Isocitrate dehydrogenase

EVs:

Extracellular vesicles

BCAA:

Branched-chain amino acid

LRR:

Leucine-rich repeat

LAT:

L-type amino acid transporter

POV1:

Prostate cancer overexpressed gene 1

p-AKT:

Phosphorylated AKT

IFN:

Interferon

SLFN5:

Schlafen family member 5

ATF4:

Activating transcription factor 4

SILAC:

Stable isotope labeling by amino acids in cell culture

FDA:

Food and Drug Administration

BCATS:

Branched-chain aminotransferases

SGCOP:

Serine, glycine, one carbon pathway

SAM:

S-adenosylmethionine

PSAT1:

Phosphoserine aminotransferase 1

PHGDH:

Phosphoglycerate dehydrogenase

LC-MS:

Liquid chromatography-mass spectrometry

GC-MS:

Gas chromatography-mass spectrometry

GNMT:

Glycine N-methyltransferase

P5C:

Δ1-Pyrroline-5-carboxylate

POX:

Proline oxidase

PRODH:

Proline dehydrogenase

LC:

Liquid chromatography

OCT:

Ornithine carbamoyl transferase

ASS1:

Argininosuccinate synthetase

TEAD:

Transcriptional enhanced associate domain

EMT:

Epithelial-to-mesenchymal transition

PRMT5:

Protein arginine methyltransferase 5

CARM1:

Coactivator-associated arginine methyltransferase

PKCλ/ι:

PKC lambda/iota

NEPC:

Neuroendocrine prostate cancer

MAPK:

MAP kinase

ERK:

Extracellular signal-regulated protein kinase

PLCε:

Phospholipase epsilon

PSHP:

Phosphoserine phosphatase

CDK:

Cyclin-dependent kinase

PDX:

Patient-derived xenograft

References

  1. N. Kazmi, P. Haycock, K. Tsilidis, B.M. Lynch, T. Truong, R.M. Martin, S.J. Lewis, Practical Consortium CBCP, Appraising causal relationships of dietary, nutritional and physical-activity exposures with overall and aggressive prostate cancer: two-sample Mendelian-randomization study based on 79 148 prostate-cancer cases and 61 106 controls. Int. J. Epidemiol. 49(2), 587–596 (2020). https://doi.org/10.1093/ije/dyz235

    Article  PubMed  Google Scholar 

  2. L. Pantanowitz, G.M. Quiroga-Garza, L. Bien, R. Heled, D. Laifenfeld, C. Linhart, J. Sandbank, A. Albrecht Shach, V. Shalev, M. Vecsler, P. Michelow, S. Hazelhurst, R. Dhir, An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit. Health 2(8), e407–e416 (2020). https://doi.org/10.1016/S2589-7500(20)30159-X

    Article  PubMed  Google Scholar 

  3. W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, G. Litjens, Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21(2), 233–241 (2020). https://doi.org/10.1016/S1470-2045(19)30739-9

    Article  PubMed  Google Scholar 

  4. G. Attard, C. Parker, R.A. Eeles, F. Schroder, S.A. Tomlins, I. Tannock, C.G. Drake, J.S. de Bono, Prostate cancer. Lancet 387(10013), 70–82 (2016). https://doi.org/10.1016/S0140-6736(14)61947-4

    Article  PubMed  Google Scholar 

  5. U. Swami, T.R. McFarland, R. Nussenzveig, N. Agarwal, Advanced prostate cancer: treatment advances and future directions. Trends Cancer 6(8), 702–715 (2020). https://doi.org/10.1016/j.trecan.2020.04.010

    Article  CAS  PubMed  Google Scholar 

  6. K.K. Singh, M.M. Desouki, R.B. Franklin, L.C. Costello, Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer 5, 14 (2006). https://doi.org/10.1186/1476-4598-5-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Goodman, K.C. Ward, A.O. Osunkoya, M.W. Datta, D. Luthringer, A.N. Young, K. Marks, V. Cohen, J.C. Kennedy, M.J. Haber, M.B. Amin, Frequency and determinants of disagreement and error in gleason scores: a population-based study of prostate cancer. Prostate 72(13), 1389–1398 (2012). https://doi.org/10.1002/pros.22484

    Article  PubMed  PubMed Central  Google Scholar 

  8. T. Palsdottir, T. Nordstrom, A. Karlsson, H. Gronberg, M. Clements, M. Eklund, The impact of different prostate-specific antigen (PSA) testing intervals on Gleason score at diagnosis and the risk of experiencing false-positive biopsy recommendations: a population-based cohort study. BMJ Open 9(3), e027958 (2019). https://doi.org/10.1136/bmjopen-2018-027958

    Article  PubMed  PubMed Central  Google Scholar 

  9. P.H. Gann, Risk factors for prostate cancer. Rev. Urol. 4(Suppl 5), S3–S10 (2002)

    PubMed  PubMed Central  Google Scholar 

  10. D.J. Hazelett, S.K. Rhie, M. Gaddis, C. Yan, D.L. Lakeland, S.G. Coetzee, B.E. Henderson, H. Noushmehr, W. Cozen, Z. Kote-Jarai, R.A. Eeles, D.F. Easton, C.A. Haiman, W. Lu, P.J. Farnham, G.A. Coetzee, Ellipse G-ONc, Practical c, Comprehensive functional annotation of 77 prostate cancer risk loci. PLoS Genet. 10(1), e1004102 (2014). https://doi.org/10.1371/journal.pgen.1004102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z.E. Stine, Z.E. Walton, B.J. Altman, A.L. Hsieh, C.V. Dang, MYC, metabolism, and cancer. Cancer Discov. 5(10), 1024–1039 (2015). https://doi.org/10.1158/2159-8290.CD-15-0507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D.P. Labbe, G. Zadra, M. Yang, J.M. Reyes, C.Y. Lin, S. Cacciatore, E.M. Ebot, A.L. Creech, F. Giunchi, M. Fiorentino, H. Elfandy, S. Syamala, E.D. Karoly, M. Alshalalfa, N. Erho, A. Ross, E.M. Schaeffer, E.A. Gibb, M. Takhar, R.B. Den, J. Lehrer, R.J. Karnes, S.J. Freedland, E. Davicioni, D.E. Spratt, L. Ellis, J.D. Jaffe, A.V. D’Amico, P.W. Kantoff, J.E. Bradner, L.A. Mucci, J.E. Chavarro, M. Loda, M. Brown, High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun. 10(1), 4358 (2019). https://doi.org/10.1038/s41467-019-12298-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Yang, Y. Bai, Y. He, Y. Zhao, J. Chen, L. Ma, Y. Pan, M. Hinten, J. Zhang, R.J. Karnes, M. Kohli, J.J. Westendorf, B. Li, R. Zhu, H. Huang, W. Xu, PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clin. Cancer Res. 24(4), 834–846 (2018). https://doi.org/10.1158/1078-0432.CCR-17-2006

    Article  CAS  PubMed  Google Scholar 

  14. R. Soundararajan, A.M. Aparicio, C.J. Logothetis, S.A. Mani, S.N. Maity, Function of tumor suppressors in resistance to antiandrogen therapy and luminal epithelial plasticity of aggressive variant neuroendocrine prostate cancers. Front. Oncol. 8, 69 (2018). https://doi.org/10.3389/fonc.2018.00069

    Article  PubMed  PubMed Central  Google Scholar 

  15. J.M. Lucas, C. Heinlein, T. Kim, S.A. Hernandez, M.S. Malik, L.D. True, C. Morrissey, E. Corey, B. Montgomery, E. Mostaghel, N. Clegg, I. Coleman, C.M. Brown, E.L. Schneider, C. Craik, J.A. Simon, A. Bedalov, P.S. Nelson, The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 4(11), 1310–1325 (2014). https://doi.org/10.1158/2159-8290.CD-13-1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Reina-Campos, J.F. Linares, A. Duran, T. Cordes, A. L’Hermitte, M.G. Badur, M.S. Bhangoo, P.K. Thorson, A. Richards, T. Rooslid, D.C. Garcia-Olmo, S.Y. Nam-Cha, A.S. Salinas-Sanchez, K. Eng, H. Beltran, D.A. Scott, C.M. Metallo, J. Moscat, M.T. Diaz-Meco, Increased Serine and one-carbon pathway metabolism by PKClambda/iota deficiency promotes neuroendocrine prostate cancer. Cancer Cell 35(3), 385-400 e389 (2019). https://doi.org/10.1016/j.ccell.2019.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D.J. Vander Griend, L. Antony, S.L. Dalrymple, Y. Xu, S.B. Christensen, S.R. Denmeade, J.T. Isaacs, Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells. Mol. Cancer Ther. 8(5), 1340–1349 (2009). https://doi.org/10.1158/1535-7163.MCT-08-1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N.M. Zacharias, C. McCullough, S. Shanmugavelandy, J. Lee, Y. Lee, P. Dutta, J. McHenry, L. Nguyen, W. Norton, L.W. Jones, P.K. Bhattacharya, Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci. Rep. 7(1), 16159 (2017). https://doi.org/10.1038/s41598-017-16327-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.A. Rice, S.V. Malhotra, T. Stoyanova, Second-generation antiandrogens: from discovery to standard of care in castration resistant prostate cancer. Front. Oncol. 9, 801 (2019). https://doi.org/10.3389/fonc.2019.00801

    Article  PubMed  PubMed Central  Google Scholar 

  20. P.L. Martin, J.J. Yin, V. Seng, O. Casey, E. Corey, C. Morrissey, R.M. Simpson, K. Kelly, Androgen deprivation leads to increased carbohydrate metabolism and hexokinase 2-mediated survival in Pten/Tp53-deficient prostate cancer. Oncogene 36(4), 525–533 (2017). https://doi.org/10.1038/onc.2016.223

    Article  CAS  PubMed  Google Scholar 

  21. W. Liu, A. Le, C. Hancock, A.N. Lane, C.V. Dang, T.W. Fan, J.M. Phang, Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. U. S. A. 109(23), 8983–8988 (2012). https://doi.org/10.1073/pnas.1203244109

    Article  PubMed  PubMed Central  Google Scholar 

  22. J.B. Choi, J.P. Myong, Y. Lee, I. Kim, J.H. Kim, S.H. Hong, U.S. Ha, Does increased body mass index lead to elevated prostate cancer risk? It depends on waist circumference. BMC Cancer 20(1), 589 (2020). https://doi.org/10.1186/s12885-020-07089-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W.W. Bassett, M.R. Cooperberg, N. Sadetsky, S. Silva, J. DuChane, D.J. Pasta, J.M. Chan, J.W. Anast, P.R. Carroll, C.J. Kane, Impact of obesity on prostate cancer recurrence after radical prostatectomy: data from CaPSURE. Urology 66(5), 1060–1065 (2005). https://doi.org/10.1016/j.urology.2005.05.040

    Article  PubMed  Google Scholar 

  24. M.R. Smith, F. Saad, B. Egerdie, P.R. Sieber, T.L. Tammela, C. Ke, B.Z. Leder, C. Goessl, Sarcopenia during androgen-deprivation therapy for prostate cancer. J. Clin. Oncol. 30(26), 3271–3276 (2012). https://doi.org/10.1200/JCO.2011.38.8850

    Article  PubMed  PubMed Central  Google Scholar 

  25. A. Lodi, A. Saha, X. Lu, B. Wang, E. Sentandreu, M. Collins, M.G. Kolonin, J. DiGiovanni, S. Tiziani, Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism. NPJ Precis.Oncol. 1 (2017). https://doi.org/10.1038/s41698-017-0024-z

  26. G. Wang, D. Zhao, D.J. Spring, R.A. DePinho, Genetics and biology of prostate cancer. Genes Dev. 32(17–18), 1105–1140 (2018). https://doi.org/10.1101/gad.315739.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W.C. Huang, X. Li, J. Liu, J. Lin, L.W. Chung, Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol. Cancer Res. 10(1), 133–142 (2012). https://doi.org/10.1158/1541-7786.MCR-11-0206

    Article  CAS  PubMed  Google Scholar 

  28. S.L. Ettinger, R. Sobel, T.G. Whitmore, M. Akbari, D.R. Bradley, M.E. Gleave, C.C. Nelson, Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64(6), 2212–2221 (2004). https://doi.org/10.1158/0008-5472.can-2148-2

    Article  CAS  PubMed  Google Scholar 

  29. E. Audet-Walsh, M. Vernier, T. Yee, C. Laflamme, S. Li, Y. Chen, V. Giguere, SREBF1 activity is regulated by an ar/mtor nuclear axis in prostate cancer. Mol. Cancer Res. 16(9), 1396–1405 (2018). https://doi.org/10.1158/1541-7786.MCR-17-0410

    Article  CAS  PubMed  Google Scholar 

  30. D.A. Bader, S.E. McGuire, Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat. Rev. Urol. 17(4), 214–231 (2020). https://doi.org/10.1038/s41585-020-0288-x

    Article  PubMed  Google Scholar 

  31. M.A. White, C. Lin, K. Rajapakshe, J. Dong, Y. Shi, E. Tsouko, R. Mukhopadhyay, D. Jasso, W. Dawood, C. Coarfa, D.E. Frigo, Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol. Cancer Res. 15(8), 1017–1028 (2017). https://doi.org/10.1158/1541-7786.MCR-16-0480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V. Strmiska, P. Michalek, T. Eckschlager, M. Stiborova, V. Adam, S. Krizkova, Heger Z (2019) Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of precision medicine. Biochim. Biophys. Acta Rev. Cancer 2, 248–258 (1871). https://doi.org/10.1016/j.bbcan.2019.01.001

    Article  CAS  Google Scholar 

  33. L.C. Costello, R.B. Franklin, The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 59(4), 269–282 (2000). https://doi.org/10.1159/000012183

    Article  CAS  PubMed  Google Scholar 

  34. M. Kratochvilova, M. Raudenska, Z. Heger, L. Richtera, N. Cernei, V. Adam, P. Babula, M. Novakova, M. Masarik, J. Gumulec, Amino acid profiling of zinc resistant prostate cancer cell lines: associations with cancer progression. Prostate 77(6), 604–616 (2017). https://doi.org/10.1002/pros.23304

    Article  CAS  PubMed  Google Scholar 

  35. M.M. Desouki, J. Geradts, B. Milon, R.B. Franklin, L.C. Costello, hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer 6, 37 (2007). https://doi.org/10.1186/1476-4598-6-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. Gonthier, R.T.K. Poluri, E. Audet-Walsh, Functional genomic studies reveal the androgen receptor as a master regulator of cellular energy metabolism in prostate cancer. J. Steroid Biochem. Mol. Biol. 191, 105367 (2019). https://doi.org/10.1016/j.jsbmb.2019.04.016

    Article  CAS  PubMed  Google Scholar 

  37. K.R. Halliday, C. Fenoglio-Preiser, L.O. Sillerud, Differentiation of human tumors from nonmalignant tissue by natural-abundance 13C NMR spectroscopy. Magn. Reson. Med. 7(4), 384–411 (1988). https://doi.org/10.1002/mrm.1910070403

    Article  CAS  PubMed  Google Scholar 

  38. K.D. Tousignant, A. Rockstroh, A. Taherian Fard, M.L. Lehman, C. Wang, S.J. McPherson, L.K. Philp, N. Bartonicek, M.E. Dinger, C.C. Nelson, M.C. Sadowski, Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17(5), 1166–1179 (2019). https://doi.org/10.1158/1541-7786.MCR-18-1147

    Article  CAS  PubMed  Google Scholar 

  39. S. Balaban, Z.D. Nassar, A.Y. Zhang, E. Hosseini-Beheshti, M.M. Centenera, M. Schreuder, H.M. Lin, A. Aishah, B. Varney, F. Liu-Fu, L.S. Lee, S.R. Nagarajan, R.F. Shearer, R.A. Hardie, N.L. Raftopulos, M.S. Kakani, D.N. Saunders, J. Holst, L.G. Horvath, L.M. Butler, A.J. Hoy, Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res, 17(4), 949–962 (2019). https://doi.org/10.1158/1541-7786.MCR-18-0347

    Article  CAS  Google Scholar 

  40. N. Poulose, F. Amoroso, R.E. Steele, R. Singh, C.W. Ong, I.G. Mills, Genetics of lipid metabolism in prostate cancer. Nat. Genet. 50(2), 169–171 (2018). https://doi.org/10.1038/s41588-017-0037-0

    Article  PubMed  Google Scholar 

  41. G. Carbonetti, T. Wilpshaar, J. Kroonen, K. Studholme, C. Converso, S. d’Oelsnitz, M. Kaczocha, FABP5 coordinates lipid signaling that promotes prostate cancer metastasis. Sci. Rep. 9(1), 18944 (2019). https://doi.org/10.1038/s41598-019-55418-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S.J. Kridel, F. Axelrod, N. Rozenkrantz, J.W. Smith, Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 64(6), 2070–2075 (2004). https://doi.org/10.1158/0008-5472.can-03-3645

    Article  CAS  PubMed  Google Scholar 

  43. Q. Wang, C.G. Bailey, C. Ng, J. Tiffen, A. Thoeng, V. Minhas, M.L. Lehman, S.C. Hendy, G. Buchanan, C.C. Nelson, J.E. Rasko, J. Holst, Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 71(24), 7525–7536 (2011). https://doi.org/10.1158/0008-5472.CAN-11-1821

    Article  CAS  PubMed  Google Scholar 

  44. H.M. Itkonen, S.S. Gorad, D.Y. Duveau, S.E. Martin, A. Barkovskaya, T.F. Bathen, S.A. Moestue, I.G. Mills, Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism. Oncotarget 7(11), 12464–12476 (2016). https://doi.org/10.18632/oncotarget.7039

    Article  PubMed  PubMed Central  Google Scholar 

  45. K. Jividen, K.Z. Kedzierska, C.S. Yang, K. Szlachta, A. Ratan, B.M. Paschal, Genomic analysis of DNA repair genes and androgen signaling in prostate cancer. BMC Cancer 18(1), 960 (2018). https://doi.org/10.1186/s12885-018-4848-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C.E. Massie, A. Lynch, A. Ramos-Montoya, J. Boren, R. Stark, L. Fazli, A. Warren, H. Scott, B. Madhu, N. Sharma, H. Bon, V. Zecchini, D.M. Smith, G.M. Denicola, N. Mathews, M. Osborne, J. Hadfield, S. Macarthur, B. Adryan, S.K. Lyons, K.M. Brindle, J. Griffiths, M.E. Gleave, P.S. Rennie, D.E. Neal, I.G. Mills, The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30(13), 2719–2733 (2011). https://doi.org/10.1038/emboj.2011.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J.L. Gillis, J.A. Hinneh, N.K. Ryan, S. Irani, M. Moldovan, L.E. Quek, R.K. Shrestha, A.R. Hanson, J. Xie, A.J. Hoy, J. Holst, M.M. Centenera, I.G. Mills, D.J. Lynn, L.A. Selth, L.M. Butler, A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. Elife 10 (2021). https://doi.org/10.7554/eLife.62592

  48. A.A. Cluntun, M.J. Lukey, R.A. Cerione, J.W. Locasale, Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3(3), 169–180 (2017). https://doi.org/10.1016/j.trecan.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. E.L. Lieu, T. Nguyen, S. Rhyne, J. Kim, Amino acids in cancer. Exp. Mol. Med. 52(1), 15–30 (2020). https://doi.org/10.1038/s12276-020-0375-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. X. Wang, C.G. Proud, The mTOR pathway in the control of protein synthesis. Physiology (Bethesda) 21, 362–369 (2006). https://doi.org/10.1152/physiol.00024.2006

    Article  CAS  Google Scholar 

  51. M. Kafri, E. Metzl-Raz, G. Jona, N. Barkai, The Cost of protein production. Cell. Rep. 14(1), 22–31 (2016). https://doi.org/10.1016/j.celrep.2015.12.015

    Article  CAS  PubMed  Google Scholar 

  52. M. Jhanwar-Uniyal, J.V. Wainwright, A.L. Mohan, M.E. Tobias, R. Murali, C.D. Gandhi, M.H. Schmidt, Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv. Biol. Regul. 72, 51–62 (2019). https://doi.org/10.1016/j.jbior.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  53. R.A. Saxton, D.M. Sabatini, mTOR signaling in growth, metabolism, and disease. Cell 168(6), 960–976 (2017). https://doi.org/10.1016/j.cell.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. L.C. Kim, R.S. Cook, J. Chen, mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene 36(16), 2191–2201 (2017). https://doi.org/10.1038/onc.2016.363

    Article  CAS  PubMed  Google Scholar 

  55. W.J. Oh, E. Jacinto, mTOR complex 2 signaling and functions. Cell Cycle 10(14), 2305–2316 (2011). https://doi.org/10.4161/cc.10.14.16586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. M. Gupta, A.E. Hendrickson, S.S. Yun, J.J. Han, P.A. Schneider, B.D. Koh, M.J. Stenson, L.E. Wellik, J.C. Shing, K.L. Peterson, K.S. Flatten, A.D. Hess, B.D. Smith, J.E. Karp, S. Barr, T.E. Witzig, S.H. Kaufmann, Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies. Blood 119(2), 476–487 (2012). https://doi.org/10.1182/blood-2011-04-346601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S.M. Fendt, E.L. Bell, M.A. Keibler, S.M. Davidson, G.J. Wirth, B. Fiske, J.R. Mayers, M. Schwab, G. Bellinger, A. Csibi, A. Patnaik, M.J. Blouin, L.C. Cantley, L. Guarente, J. Blenis, M.N. Pollak, A.F. Olumi, M.G. Vander Heiden, G. Stephanopoulos, Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73(14), 4429–4438 (2013). https://doi.org/10.1158/0008-5472.CAN-13-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. C. Magaway, E. Kim, E. Jacinto, Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells 8(12) (2019). https://doi.org/10.3390/cells8121584

  59. D.A. Guertin, D.M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell. 12(1), 9–22 (2007). https://doi.org/10.1016/j.ccr.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  60. L.M. Lindqvist, K. Tandoc, I. Topisirovic, L. Furic, Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Curr. Opin. Genet. Dev. 48, 104–111 (2018). https://doi.org/10.1016/j.gde.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  61. V. Giguere, DNA-PK, nuclear mTOR, and the androgen pathway in prostate cancer. Trends Cancer 6(4), 337–347 (2020). https://doi.org/10.1016/j.trecan.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  62. N. Hay, The Akt-mTOR tango and its relevance to cancer. Cancer Cell. 8(3), 179–183 (2005). https://doi.org/10.1016/j.ccr.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  63. J. Du, M. Yang, S. Chen, D. Li, Z. Chang, Z. Dong, PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model. Oncogene 35(25), 3314–3323 (2016). https://doi.org/10.1038/onc.2015.393

    Article  CAS  PubMed  Google Scholar 

  64. K. Masui, W.K. Cavenee, P.S. Mischel, mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol. Metab. 25(7), 364–373 (2014). https://doi.org/10.1016/j.tem.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. A.C. Hsieh, Y. Liu, M.P. Edlind, N.T. Ingolia, M.R. Janes, A. Sher, E.Y. Shi, C.R. Stumpf, C. Christensen, M.J. Bonham, S. Wang, P. Ren, M. Martin, K. Jessen, M.E. Feldman, J.S. Weissman, K.M. Shokat, C. Rommel, D. Ruggero, The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396), 55–61 (2012). https://doi.org/10.1038/nature10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. E. Audet-Walsh, C.R. Dufour, T. Yee, F.Z. Zouanat, M. Yan, G. Kalloghlian, M. Vernier, M. Caron, G. Bourque, E. Scarlata, L. Hamel, F. Brimo, A.G. Aprikian, J. Lapointe, S. Chevalier, V. Giguere, Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes Dev. 31(12), 1228–1242 (2017). https://doi.org/10.1101/gad.299958.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. T. Jamaspishvili, D.M. Berman, A.E. Ross, H.I. Scher, A.M. De Marzo, J.A. Squire, T.L. Lotan, Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 15(4), 222–234 (2018). https://doi.org/10.1038/nrurol.2018.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. H.C. Dan, M.J. Cooper, P.C. Cogswell, J.A. Duncan, J.P. Ting, A.S. Baldwin, Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev. 22(11), 1490–1500 (2008). https://doi.org/10.1101/gad.1662308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. L. Wang, H. Xiong, F. Wu, Y. Zhang, J. Wang, L. Zhao, X. Guo, L.J. Chang, Y. Zhang, M.J. You, S. Koochekpour, M. Saleem, H. Huang, J. Lu, Y. Deng, Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 8(5), 1461–1474 (2014). https://doi.org/10.1016/j.celrep.2014.07.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D.A. Guertin, D.M. Stevens, M. Saitoh, S. Kinkel, K. Crosby, J.H. Sheen, D.J. Mullholland, M.A. Magnuson, H. Wu, D.M. Sabatini, mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15(2), 148–159 (2009). https://doi.org/10.1016/j.ccr.2008.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. B. Guan, K. Wu, J. Zeng, S. Xu, L. Mu, Y. Gao, K. Wang, Z. Ma, J. Tian, Q. Shi, P. Guo, X. Wang, D. He, Y. Du, Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer. Oncotarget 8(5), 8162–8172 (2017). https://doi.org/10.18632/oncotarget.14131

    Article  PubMed  Google Scholar 

  72. S.V. Venugopal, S. Caggia, D. Gambrell-Sanders, S.A. Khan, Differential roles and activation of mammalian target of rapamycin complexes 1 and 2 during cell migration in prostate cancer cells. Prostate 80(5), 412–423 (2020). https://doi.org/10.1002/pros.23956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. L. Furic, L. Rong, O. Larsson, I.H. Koumakpayi, K. Yoshida, A. Brueschke, E. Petroulakis, N. Robichaud, M. Pollak, L.A. Gaboury, P.P. Pandolfi, F. Saad, N. Sonenberg, eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc. Natl. Acad. Sci. U. S. A. 107(32), 14134–14139 (2010). https://doi.org/10.1073/pnas.1005320107

    Article  PubMed  PubMed Central  Google Scholar 

  74. V. Beilsten-Edmands, Y. Gordiyenko, J.C. Kung, S. Mohammed, C. Schmidt, C.V. Robinson, eIF2 interactions with initiator tRNA and eIF2B are regulated by post-translational modifications and conformational dynamics. Cell Discov. 1, 15020 (2015). https://doi.org/10.1038/celldisc.2015.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. H.G. Nguyen, C.S. Conn, Y. Kye, L. Xue, C.M. Forester, J.E. Cowan, A.C. Hsieh, J.T. Cunningham, C. Truillet, F. Tameire, M.J. Evans, C.P. Evans, J.C. Yang, B. Hann, C. Koumenis, P. Walter, P.R. Carroll, D. Ruggero, Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. 10(439) (2018). https://doi.org/10.1126/scitranslmed.aar2036

  76. C.L. Amaral, L.B. Freitas, R.E. Tamura, M.R. Tavares, I.C. Pavan, M.C. Bajgelman, F.M. Simabuco, S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer 16, 602 (2016). https://doi.org/10.1186/s12885-016-2629-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. A.C. Hsieh, H.G. Nguyen, L. Wen, M.P. Edlind, P.R. Carroll, W. Kim, D. Ruggero, Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors. Sci. Signal 8(403), ra116 (2015). https://doi.org/10.1126/scisignal.aad5111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. E.I.J. Lelong, P. Adjibade, F.-H. Joncas, G. Khelifi, V.S-S. Grenier, A. Zoubedi, J.-P. Lambert, P. Toren, R. Mazroui, S.M.I Hussein, Prostate cancer resistance leads to a global deregulation of translation factors and unconventional translation of long non-coding RNAs. bioRxiv:2021.2001.2005.425492 (2021). https://doi.org/10.1101/2021.01.05.425492

  79. V. Cruzat, M. Macedo Rogero, K. Noel Keane, R. Curi, P. Newsholme, Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 10(11) (2018). https://doi.org/10.3390/nu10111564

  80. E. Roth, Nonnutritive effects of glutamine. J. Nutr. 138(10), 2025S-2031S (2008). https://doi.org/10.1093/jn/138.10.2025S

    Article  CAS  PubMed  Google Scholar 

  81. M.R. Freeman, J. Kim, M.P. Lisanti, D. Di Vizio, A metabolic perturbation by U0126 identifies a role for glutamine in resveratrol-induced cell death. Cancer Biol. Ther. 12(11), 966–977 (2011). https://doi.org/10.4161/cbt.12.11.18136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. P. Newsholme, J. Procopio, M.M. Lima, T.C. Pithon-Curi, R. Curi, Glutamine and glutamate–their central role in cell metabolism and function. Cell Biochem. Funct. 21(1), 1–9 (2003). https://doi.org/10.1002/cbf.1003

    Article  CAS  PubMed  Google Scholar 

  83. M. Stumvoll, G. Perriello, C. Meyer, J. Gerich, Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int. 55(3), 778–792 (1999). https://doi.org/10.1046/j.1523-1755.1999.055003778.x

    Article  CAS  PubMed  Google Scholar 

  84. A.M. Shah, F.E. Wondisford, Tracking the carbons supplying gluconeogenesis. J. Biol. Chem. 295(42), 14419–14429 (2020). https://doi.org/10.1074/jbc.REV120.012758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S. Matsumoto, J. Haberle, J. Kido, H. Mitsubuchi, F. Endo, K. Nakamura, Urea cycle disorders-update. J. Hum. Genet. 64(9), 833–847 (2019). https://doi.org/10.1038/s10038-019-0614-4

    Article  CAS  PubMed  Google Scholar 

  86. J.M. Rumberger, T. Wu, M.A. Hering, S. Marshall, Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: effects of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase mRNA levels. J. Biol. Chem. 278(31), 28547–28552 (2003). https://doi.org/10.1074/jbc.M302793200

    Article  CAS  PubMed  Google Scholar 

  87. R. Curi, C.J. Lagranha, S.Q. Doi, D.F. Sellitti, J. Procopio, T.C. Pithon-Curi, M. Corless, P. Newsholme, Molecular mechanisms of glutamine action. J. Cell. Physiol. 204(2), 392–401 (2005). https://doi.org/10.1002/jcp.20339

    Article  CAS  PubMed  Google Scholar 

  88. D.R. Wise, C.B. Thompson, Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35(8), 427–433 (2010). https://doi.org/10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. N. Pissimissis, E. Papageorgiou, P. Lembessis, A. Armakolas, M. Koutsilieris, The glutamatergic system expression in human PC-3 and LNCaP prostate cancer cells. Anticancer Res. 29(1), 371–377 (2009)

    CAS  PubMed  Google Scholar 

  90. Y. Li, X. Li, X. Li, Y. Zhong, Y. Ji, D. Yu, M. Zhang, J.G. Wen, H. Zhang, M.A. Goscinski, J.M. Nesland, Z. Suo, PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget 7(33), 53837–53852 (2016). https://doi.org/10.18632/oncotarget.10782

    Article  PubMed  PubMed Central  Google Scholar 

  91. V.R. Minciacchi, S. You, C. Spinelli, S. Morley, M. Zandian, P.J. Aspuria, L. Cavallini, C. Ciardiello, M. Reis Sobreiro, M. Morello, G. Kharmate, S.C. Jang, D.K. Kim, E. Hosseini-Beheshti, E. Tomlinson Guns, M. Gleave, Y.S. Gho, S. Mathivanan, W. Yang, M.R. Freeman, D. Di Vizio, Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13), 11327–11341 (2015). https://doi.org/10.18632/oncotarget.3598

    Article  PubMed  PubMed Central  Google Scholar 

  92. G. Albayrak, E. Konac, A.U. Dikmen, C.Y. Bilen, Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells. Hum. Exp. Toxicol. 37(9), 953–958 (2018). https://doi.org/10.1177/0960327117747025

    Article  CAS  PubMed  Google Scholar 

  93. A. Schcolnik-Cabrera, A. Chavez-Blanco, G. Dominguez-Gomez, M. Juarez, A. Vargas-Castillo, R.I. Ponce-Toledo, D. Lai, S. Hua, A.R. Tovar, N. Torres, D. Perez-Montiel, J. Diaz-Chavez, A. Duenas-Gonzalez, Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci. Rep. 11(1), 5222 (2021). https://doi.org/10.1038/s41598-021-84538-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. J. Zhang, S. Mao, Y. Guo, Y. Wu, X. Yao, Y. Huang, Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer. Biosci. Rep. 39(6) (2019). https://doi.org/10.1042/BSR20181826

  95. M. Ngollo, A. Lebert, M. Daures, G. Judes, K. Rifai, L. Dubois, J.L. Kemeny, F. Penault-Llorca, Y.J. Bignon, L. Guy, D. Bernard-Gallon, Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression. BMC Cancer 17(1), 261 (2017). https://doi.org/10.1186/s12885-017-3256-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. M.J. Salji, A. Blomme, J.H.M. Dabritz, P. Repiscak, S. Lilla, R. Patel, D. Sumpton, N.J.F. van den Broek, R. Daly, S. Zanivan, H.Y. Leung, Multi-omics & pathway analysis identify potential roles for tumor N-acetyl aspartate accumulation in murine models of castration-resistant prostate cancer. iScience 25(4), (2022). https://doi.org/10.1016/j.isci.2022.104056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. K. Gonthier, R.T.K. Poluri, C. Weidmann, M. Tadros, E. Audet-Walsh, Reprogramming of isocitrate dehydrogenases expression and activity by the androgen receptor in prostate cancer. Mol. Cancer Res. 17(8), 1699–1709 (2019). https://doi.org/10.1158/1541-7786.MCR-19-0020

    Article  CAS  PubMed  Google Scholar 

  98. E. Eidelman, J. Twum-Ampofo, J. Ansari, M.M. Siddiqui, The metabolic phenotype of prostate cancer. Front. Oncol. 7, 131 (2017). https://doi.org/10.3389/fonc.2017.00131

    Article  PubMed  PubMed Central  Google Scholar 

  99. M.J. Lukey, K.F. Wilson, R.A. Cerione, Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med. Chem. 5(14), 1685–1700 (2013). https://doi.org/10.4155/fmc.13.130

    Article  CAS  PubMed  Google Scholar 

  100. M.A. Desbats, I. Giacomini, T. Prayer-Galetti, M. Montopoli, Metabolic plasticity in chemotherapy resistance. Front. Oncol. 10, 281 (2020). https://doi.org/10.3389/fonc.2020.00281

    Article  PubMed  PubMed Central  Google Scholar 

  101. E. Aguilar, I. Marin de Mas, E. Zodda, S. Marin, F. Morrish, V. Selivanov, O. Meca-Cortes, H. Delowar, M. Pons, I. Izquierdo, T. Celia-Terrassa, P. de Atauri, J.J. Centelles, D. Hockenbery, T.M. Thomson, M. Cascante, Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program. Stem Cells 34(5), 1163–1176 (2016). https://doi.org/10.1002/stem.2286

    Article  CAS  PubMed  Google Scholar 

  102. J.A. Schneider, S.K. Logan, Revisiting the role of Wnt/beta-catenin signaling in prostate cancer. Mol. Cell. Endocrinol. 462(Pt A), 3–8 (2018). https://doi.org/10.1016/j.mce.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  103. M. Holecek, Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond) 15, 33 (2018). https://doi.org/10.1186/s12986-018-0271-1

    Article  CAS  Google Scholar 

  104. P.J. Garlick, The role of leucine in the regulation of protein metabolism. J. Nutr. 135(6 Suppl), 1553S-1556S (2005). https://doi.org/10.1093/jn/135.6.1553S

    Article  CAS  PubMed  Google Scholar 

  105. P.J. Atherton, K. Smith, T. Etheridge, D. Rankin, M.J. Rennie, Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38(5), 1533–1539 (2010). https://doi.org/10.1007/s00726-009-0377-x

    Article  CAS  PubMed  Google Scholar 

  106. J. Bella, K.L. Hindle, P.A. McEwan, S.C. Lovell, The leucine-rich repeat structure. Cell. Mol. Life Sci. 65(15), 2307–2333 (2008). https://doi.org/10.1007/s00018-008-8019-0

    Article  CAS  PubMed  Google Scholar 

  107. Z. Pancer, M.D. Cooper, The evolution of adaptive immunity. Annu. Rev. Immunol. 24, 497–518 (2006). https://doi.org/10.1146/annurev.immunol.24.021605.090542

    Article  CAS  PubMed  Google Scholar 

  108. Y. Chen, S. Aulia, L. Li, B.L. Tang, AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res. Rev. 51(2), 265–274 (2006). https://doi.org/10.1016/j.brainresrev.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  109. E. Liker, E. Fernandez, E. Izaurralde, E. Conti, The structure of the mRNA export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO J. 19(21), 5587–5598 (2000). https://doi.org/10.1093/emboj/19.21.5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. C.R. Vinson, P.B. Sigler, S.L. McKnight, Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246(4932), 911–916 (1989). https://doi.org/10.1126/science.2683088

    Article  CAS  PubMed  Google Scholar 

  111. J. Sorensen, R. Owenius, M. Lax, S. Johansson, Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 40(3), 394–402 (2013). https://doi.org/10.1007/s00259-012-2291-9

    Article  CAS  PubMed  Google Scholar 

  112. Q. Wang, J. Tiffen, C.G. Bailey, M.L. Lehman, W. Ritchie, L. Fazli, C. Metierre, Y.J. Feng, E. Li, M. Gleave, G. Buchanan, C.C. Nelson, J.E. Rasko, J. Holst, Targeting amino acid transport in metastatic castration-resistant prostate cancer: effects on cell cycle, cell growth, and tumor development. J. Natl. Cancer Inst. 105(19), 1463–1473 (2013). https://doi.org/10.1093/jnci/djt241

    Article  CAS  PubMed  Google Scholar 

  113. B.K. Zhang, A.M. Moran, C.G. Bailey, J.E.J. Rasko, J. Holst, Q. Wang, EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer. Cell. Commun. Signal 17(1), 83 (2019). https://doi.org/10.1186/s12964-019-0400-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. H. Otsuki, T. Kimura, T. Yamaga, T. Kosaka, J.I. Suehiro, H. Sakurai, Prostate cancer cells in different androgen receptor status employ different leucine transporters. Prostate 77(2), 222–233 (2017). https://doi.org/10.1002/pros.23263

    Article  CAS  PubMed  Google Scholar 

  115. R.S. Martinez, M.J. Salji, L. Rushworth, C. Ntala, G. Rodriguez Blanco, A. Hedley, W. Clark, P. Peixoto, E. Hervouet, E. Renaude, S.H.Y. Kung, L.C.A. Galbraith, C. Nixon, S. Lilla, G.M. MacKay, L. Fazli, L. Gaughan, D. Sumpton, M.E. Gleave, S. Zanivan, A. Blomme, H.Y. Leung, SLFN5 regulates LAT1-mediated mTOR activation in castration-resistant prostate cancer. Cancer Res. 81(13), 3664–3678 (2021). https://doi.org/10.1158/0008-5472.CAN-20-3694

    Article  CAS  PubMed  Google Scholar 

  116. A. Sreekumar, L.M. Poisson, T.M. Rajendiran, A.P. Khan, Q. Cao, J. Yu, B. Laxman, R. Mehra, R.J. Lonigro, Y. Li, M.K. Nyati, A. Ahsan, S. Kalyana-Sundaram, B. Han, X. Cao, J. Byun, G.S. Omenn, D. Ghosh, S. Pennathur, D.C. Alexander, A. Berger, J.R. Shuster, J.T. Wei, S. Varambally, C. Beecher, A.M. Chinnaiyan, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457(7231), 910–914 (2009). https://doi.org/10.1038/nature07762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. K. Bouchelouche, S.T. Tagawa, S.J. Goldsmith, B. Turkbey, J. Capala, P. Choyke, PET/CT imaging and radioimmunotherapy of prostate cancer. Semin. Nucl. Med. 41(1), 29–44 (2011). https://doi.org/10.1053/j.semnuclmed.2010.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  118. A. Turpin, E. Girard, C. Baillet, D. Pasquier, J. Olivier, A. Villers, P. Puech, N. Penel, Imaging for metastasis in prostate cancer: a review of the literature. Front. Oncol. 10, 55 (2020). https://doi.org/10.3389/fonc.2020.00055

    Article  PubMed  PubMed Central  Google Scholar 

  119. K.L. Wallitt, S.R. Khan, S. Dubash, H.H. Tam, S. Khan, T.D. Barwick, Clinical PET imaging in prostate cancer. Radiographics 37(5), 1512–1536 (2017). https://doi.org/10.1148/rg.2017170035

    Article  PubMed  Google Scholar 

  120. Y. Song, J. Li, H.D. Shin, G. Du, L. Liu, J. Chen, One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci. Rep. 5, 12614 (2015). https://doi.org/10.1038/srep12614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. K.L. Billingsley, J.M. Park, S. Josan, R. Hurd, D. Mayer, E. Spielman-Sun, D.G. Nishimura, J.D. Brooks, D. Spielman, The feasibility of assessing branched-chain amino acid metabolism in cellular models of prostate cancer with hyperpolarized [1-(13)C]-ketoisocaproate. Magn. Reson. Imaging 32(7), 791–795 (2014). https://doi.org/10.1016/j.mri.2014.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. A.E. Papathanassiu, J.H. Ko, M. Imprialou, M. Bagnati, P.K. Srivastava, H.A. Vu, D. Cucchi, S.P. McAdoo, E.A. Ananieva, C. Mauro, J. Behmoaras, BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat. Commun. 8, 16040 (2017). https://doi.org/10.1038/ncomms16040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. E.A. Ananieva, A.C. Wilkinson, Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care 21(1), 64–70 (2018). https://doi.org/10.1097/MCO.0000000000000430

    Article  CAS  PubMed  Google Scholar 

  124. E. Di Cera, Serine proteases. IUBMB Life 61(5), 510–515 (2009). https://doi.org/10.1002/iub.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. D.M. Blow, J.J. Birktoft, B.S. Hartley, Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221(5178), 337–340 (1969). https://doi.org/10.1038/221337a0

    Article  CAS  PubMed  Google Scholar 

  126. J.W. Locasale, Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13(8), 572–583 (2013). https://doi.org/10.1038/nrc3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. F. Giunchi, M. Fiorentino, M. Loda, The metabolic landscape of prostate cancer. Eur. Urol. Oncol. 2(1), 28–36 (2019). https://doi.org/10.1016/j.euo.2018.06.010

    Article  PubMed  Google Scholar 

  128. A. Zabala-Letona, A. Arruabarrena-Aristorena, N. Martin-Martin, S. Fernandez-Ruiz, J.D. Sutherland, M. Clasquin, J. Tomas-Cortazar, J. Jimenez, I. Torres, P. Quang, P. Ximenez-Embun, R. Bago, A. Ugalde-Olano, A. Loizaga-Iriarte, I. Lacasa-Viscasillas, M. Unda, V. Torrano, D. Cabrera, S.M. van Liempd, Y. Cendon, E. Castro, S. Murray, A. Revandkar, A. Alimonti, Y. Zhang, A. Barnett, G. Lein, D. Pirman, A.R. Cortazar, L. Arreal, L. Prudkin, I. Astobiza, L. Valcarcel-Jimenez, P. Zuniga-Garcia, I. Fernandez-Dominguez, M. Piva, A. Caro-Maldonado, P. Sanchez-Mosquera, M. Castillo-Martin, V. Serra, N. Beraza, A. Gentilella, G. Thomas, M. Azkargorta, F. Elortza, R. Farras, D. Olmos, A. Efeyan, J. Anguita, J. Munoz, J.M. Falcon-Perez, R. Barrio, T. Macarulla, J.M. Mato, M.L. Martinez-Chantar, C. Cordon-Cardo, A.M. Aransay, K. Marks, J. Baselga, J. Tabernero, P. Nuciforo, B.D. Manning, K. Marjon, A. Carracedo, mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547(7661), 109–113 (2017). https://doi.org/10.1038/nature22964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. L.M. Duan, J.Y. Liu, C.W. Yu, J.X. Fan, T. Li, J.X. Yang, Y.B. Zheng, F.C. Liu, Z.T. He, H.L. Yuan, X.H. Wu, C.L. Luo, PLCepsilon knockdown prevents serine/glycine metabolism and proliferation of prostate cancer by suppressing YAP. Am. J. Cancer Res. 10(1), 196–210 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Z. Heger, J. Gumulec, N. Cernei, H. Polanska, M. Raudenska, M. Masarik, T. Eckschlager, M. Stiborova, V. Adam, R. Kizek, Relation of exposure to amino acids involved in sarcosine metabolic pathway on behavior of non-tumor and malignant prostatic cell lines. Prostate 76(7), 679–690 (2016). https://doi.org/10.1002/pros.23159

    Article  CAS  PubMed  Google Scholar 

  131. Y.H. Song, M. Shiota, K. Kuroiwa, S. Naito, Y. Oda, The important role of glycine N-methyltransferase in the carcinogenesis and progression of prostate cancer. Mod. Pathol. 24(9), 1272–1280 (2011). https://doi.org/10.1038/modpathol.2011.76

    Article  CAS  PubMed  Google Scholar 

  132. A.P. Khan, T.M. Rajendiran, B. Ateeq, I.A. Asangani, J.N. Athanikar, A.K. Yocum, R. Mehra, J. Siddiqui, G. Palapattu, J.T. Wei, G. Michailidis, A. Sreekumar, A.M. Chinnaiyan, The role of sarcosine metabolism in prostate cancer progression. Neoplasia 15(5), 491–501 (2013). https://doi.org/10.1593/neo.13314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. S. Ottaviani, G.N. Brooke, C. O’Hanlon-Brown, J. Waxman, S. Ali, L. Buluwela, Characterisation of the androgen regulation of glycine N-methyltransferase in prostate cancer cells. J. Mol. Endocrinol. 51(3), 301–312 (2013). https://doi.org/10.1530/JME-13-0169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. J. Gumulec, M. Raudenska, D. Pacik, M. Plevova, A. Sorokac-Kubolkova, Z. Lackova, N. Cernei, V. Strmiska, O. Zitka, Z. Heger, V. Adam, Post-treatment urinary sarcosine as a predictor of recurrent relapses in patients with prostate cancer. Cancer Med. 7(11), 5411–5419 (2018). https://doi.org/10.1002/cam4.1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. F. Jentzmik, C. Stephan, M. Lein, K. Miller, B. Kamlage, B. Bethan, G. Kristiansen, K. Jung, Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol. 185(2), 706–711 (2011). https://doi.org/10.1016/j.juro.2010.09.077

    Article  CAS  PubMed  Google Scholar 

  136. S. Melnikov, J. Mailliot, L. Rigger, S. Neuner, B.S. Shin, G. Yusupova, T.E. Dever, R. Micura, M. Yusupov, Molecular insights into protein synthesis with proline residues. EMBO Rep. 17(12), 1776–1784 (2016). https://doi.org/10.15252/embr.201642943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. M. Levitt, Effect of proline residues on protein folding. J. Mol. Biol. 145(1), 251–263 (1981). https://doi.org/10.1016/0022-2836(81)90342-9

    Article  CAS  PubMed  Google Scholar 

  138. A. Barbul, Proline precursors to sustain Mammalian collagen synthesis. J. Nutr. 138(10), 2021S-2024S (2008). https://doi.org/10.1093/jn/138.10.2021S

    Article  CAS  PubMed  Google Scholar 

  139. C.J. Doillon, M.G. Dunn, E. Bender, F.H. Silver, Collagen fiber formation in repair tissue: development of strength and toughness. Coll. Relat. Res. 5(6), 481–492 (1985). https://doi.org/10.1016/s0174-173x(85)80002-9

    Article  CAS  PubMed  Google Scholar 

  140. C. D’Aniello, E.J. Patriarca, J.M. Phang, G. Minchiotti, Proline metabolism in tumor growth and metastatic progression. Front. Oncol. 10, 776 (2020). https://doi.org/10.3389/fonc.2020.00776

    Article  PubMed  PubMed Central  Google Scholar 

  141. K. Wang, W. Zhang, Z. Wang, M. Gao, X. Wang, W. Han, N. Zhang, X. Xu, Flavokawain A inhibits prostate cancer cells by inducing cell cycle arrest and cell apoptosis and regulating the glutamine metabolism pathway. J. Pharm. Biomed. Anal. 186, 113288 (2020). https://doi.org/10.1016/j.jpba.2020.113288

    Article  CAS  PubMed  Google Scholar 

  142. S.K. Natarajan, W. Zhu, X. Liang, L. Zhang, A.J. Demers, M.C. Zimmerman, M.A. Simpson, D.F. Becker, Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death. Free Radic. Biol. Med. 53(5), 1181–1191 (2012). https://doi.org/10.1016/j.freeradbiomed.2012.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Z. Heger, N. Cernei, J. Gumulec, M. Masarik, T. Eckschlager, R. Hrabec, O. Zitka, V. Adam, R. Kizek, Determination of common urine substances as an assay for improving prostate carcinoma diagnostics. Oncol. Rep. 31(4), 1846–1854 (2014). https://doi.org/10.3892/or.2014.3054

    Article  CAS  PubMed  Google Scholar 

  144. M. Liu, Y. Wang, C. Yang, Y. Ruan, C. Bai, Q. Chu, Y. Cui, C. Chen, G. Ying, B. Li, Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth. J. Exp. Med. 217(3) (2020). https://doi.org/10.1084/jem.20191226

  145. W.D. Sroka, B.A. Boughton, P. Reddy, U. Roessner, P. Slupski, P. Jarzemski, A. Dabrowska, M.J. Markuszewski, M.P. Marszall, Determination of amino acids in urine of patients with prostate cancer and benign prostate growth. Eur. J. Cancer Prev. 26(2), 131–134 (2017). https://doi.org/10.1097/CEJ.0000000000000248

    Article  CAS  PubMed  Google Scholar 

  146. B. Delage, D.A. Fennell, L. Nicholson, I. McNeish, N.R. Lemoine, T. Crook, P.W. Szlosarek, Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126(12), 2762–2772 (2010). https://doi.org/10.1002/ijc.25202

    Article  CAS  PubMed  Google Scholar 

  147. C.T. Armstrong, P.E. Mason, J.L. Anderson, C.E. Dempsey, Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 6, 21759 (2016). https://doi.org/10.1038/srep21759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. M.J. Harms, J.L. Schlessman, G.R. Sue, B. Garcia-Moreno, Arginine residues at internal positions in a protein are always charged. Proc. Natl. Acad. Sci. U. S. A. 108(47), 18954–18959 (2011). https://doi.org/10.1073/pnas.1104808108

    Article  PubMed  PubMed Central  Google Scholar 

  149. C.A. Fitch, G. Platzer, M. Okon, B.E. Garcia-Moreno, L.P. McIntosh, Arginine: Its pKa value revisited. Protein Sci. 24(5), 752–761 (2015). https://doi.org/10.1002/pro.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. R.C. Blantz, J. Satriano, F. Gabbai, C. Kelly, Biological effects of arginine metabolites. Acta. Physiol. Scand. 168(1), 21–25 (2000). https://doi.org/10.1046/j.1365-201x.2000.00646.x

    Article  CAS  PubMed  Google Scholar 

  151. A.A. Reyes, I.E. Karl, S. Klahr, Role of arginine in health and in renal disease. Am. J. Physiol. 267(3 Pt 2), F331-346 (1994). https://doi.org/10.1152/ajprenal.1994.267.3.F331

    Article  CAS  PubMed  Google Scholar 

  152. E.C. Hsueh, S.M. Knebel, W.H. Lo, Y.C. Leung, P.N. Cheng, C.T. Hsueh, Deprivation of arginine by recombinant human arginase in prostate cancer cells. J. Hematol. Oncol. 5, 17 (2012). https://doi.org/10.1186/1756-8722-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. C.L. Chen, S.C. Hsu, T.Y. Chung, C.Y. Chu, H.J. Wang, P.W. Hsiao, S.D. Yeh, D.K. Ann, Y. Yen, H.J. Kung, Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nat. Commun. 12(1), 2398 (2021). https://doi.org/10.1038/s41467-021-22652-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. A. Shukla-Dave, M. Castillo-Martin, M. Chen, J. Lobo, N. Gladoun, A. Collazo-Lorduy, F.M. Khan, V. Ponomarev, Z. Yi, W. Zhang, P.P. Pandolfi, H. Hricak, C. Cordon-Cardo, Ornithine decarboxylase is sufficient for prostate tumorigenesis via androgen receptor signaling. Am. J. Pathol. 186(12), 3131–3145 (2016). https://doi.org/10.1016/j.ajpath.2016.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. P.W. Szlosarek, Arginine deprivation and autophagic cell death in cancer. Proc. Natl. Acad. Sci. U. S. A. 111(39), 14015–14016 (2014). https://doi.org/10.1073/pnas.1416560111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. X. Deng, G. Shao, H.T. Zhang, C. Li, D. Zhang, L. Cheng, B.D. Elzey, R. Pili, T.L. Ratliff, J. Huang, C.D. Hu, Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene 36(9), 1223–1231 (2017). https://doi.org/10.1038/onc.2016.287

    Article  CAS  PubMed  Google Scholar 

  157. I. Dudka, E. Thysell, K. Lundquist, H. Antti, D. Iglesias-Gato, A. Flores-Morales, A. Bergh, P. Wikstrom, G. Grobner, Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC Cancer 20(1), 437 (2020). https://doi.org/10.1186/s12885-020-06908-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Z. Mounir, J.M. Korn, T. Westerling, F. Lin, C.A. Kirby, M. Schirle, G. McAllister, G. Hoffman, N. Ramadan, A. Hartung, Y. Feng, D.R. Kipp, C. Quinn, M. Fodor, J. Baird, M. Schoumacher, R. Meyer, J. Deeds, G. Buchwalter, T. Stams, N. Keen, W.R. Sellers, M. Brown, R.A. Pagliarini, ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. Elife 5 (2016). https://doi.org/10.7554/eLife.13964

  159. S. Majumder, Y. Liu, O.H. Ford 3rd., J.L. Mohler, Y.E. Whang, Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66(12), 1292–1301 (2006). https://doi.org/10.1002/pros.20438

    Article  CAS  PubMed  Google Scholar 

  160. O. Alhalabi, A. Naing, R. Groisberg, A. Hahn, S. Zhang, S.C. Berkey, A.M. Tsimberidou, J. Rodon, T.A. Yap, S. Pant, A.Y. Shah, A. Zurita-Saavedra, N. Tannir, F. Meric-Bernstam, V. Subbiah, Phase I study of mTORC1–2 inhibitor sapanisertib (TAK-228) in combination with carboplatin plus paclitaxelin patients with advanced solid malignancies and mTOR pathway alterations [abstract]. Cancer Res. 81(13) (2021). https://doi.org/10.1158/1538-7445.AM2021-CT109

  161. S. Li, J. Sheng, Z. Liu, Y. Fan, C. Zhang, T. Lv, S. Hu, J. Jin, W. Yu, Y. Song, Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J. Cell. Mol. Med. 25(5), 2436–2449 (2021). https://doi.org/10.1111/jcmm.16155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. R.S. Wahdan-Alaswad, K.L. Bane, K. Song, D.T. Shola, J.A. Garcia, D. Danielpour, Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin. Mol. Cancer Res. 10(6), 821–833 (2012). https://doi.org/10.1158/1541-7786.MCR-11-0615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. L. Graham, K. Banda, A. Torres, B.S. Carver, Y. Chen, K. Pisano, G. Shelkey, T. Curley, H.I. Scher, T.L. Lotan, A.C. Hsieh, D.E. Rathkopf, A phase II study of the dual mTOR inhibitor MLN0128 in patients with metastatic castration resistant prostate cancer. Invest. New Drugs 36(3), 458–467 (2018). https://doi.org/10.1007/s10637-018-0578-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. F. La Manna, M. De Menna, N. Patel, S. Karkampouna, M.R. De Filippo, I. Klima, P. Kloen, L. Beimers, G.N. Thalmann, R.C.M. Pelger, E. Jacinto, M. Kruithof-de Julio, Dual-mTOR inhibitor rapalink-1 reduces prostate cancer patient-derived xenograft growth and alters tumor heterogeneity. Front. Oncol. 10, 1012 (2020). https://doi.org/10.3389/fonc.2020.01012

    Article  PubMed  PubMed Central  Google Scholar 

  165. Y. Yasumizu, A. Miyajima, T. Kosaka, Y. Miyazaki, E. Kikuchi, M. Oya, Dual PI3K/mTOR inhibitor NVP-BEZ235 sensitizes docetaxel in castration resistant prostate cancer. J. Urol. 191(1), 227–234 (2014). https://doi.org/10.1016/j.juro.2013.07.101

    Article  CAS  PubMed  Google Scholar 

  166. M.S. Neshat, I.K. Mellinghoff, C. Tran, B. Stiles, G. Thomas, R. Petersen, P. Frost, J.J. Gibbons, H. Wu, C.L. Sawyers, Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. U. S. A. 98(18), 10314–10319 (2001). https://doi.org/10.1073/pnas.171076798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. A. Mancini, A. Colapietro, S. Pompili, A. Del Fattore, S. Delle Monache, L.A. Biordi, A. Angelucci, V. Mattei, C. Liang, G.L. Gravina, C. Festuccia, Dual PI3 K/mTOR inhibition reduces prostate cancer bone engraftment altering tumor-induced bone remodeling. Tumour Biol. 40(4), (2018). https://doi.org/10.1177/1010428318771773

    Article  CAS  PubMed  Google Scholar 

  168. D.E. Butler, C. Marlein, H.F. Walker, F.M. Frame, V.M. Mann, M.S. Simms, B.R. Davies, A.T. Collins, N.J. Maitland, Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 8(34), 56698–56713 (2017). https://doi.org/10.18632/oncotarget.18082

    Article  PubMed  PubMed Central  Google Scholar 

  169. L. Xu, Y. Yin, Y. Li, X. Chen, Y. Chang, H. Zhang, J. Liu, J. Beasley, P. McCaw, H. Zhang, S. Young, J. Groth, Q. Wang, J.W. Locasale, X. Gao, D.G. Tang, X. Dong, Y. He, D. George, H. Hu, J. Huang, A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 118(13) (2021). https://doi.org/10.1073/pnas.2012748118

  170. Z. Heger, H. Polanska, M.A. Merlos Rodrigo, R. Guran, P. Kulich, P. Kopel, M. Masarik, T. Eckschlager, M. Stiborova, R. Kizek, V. Adam, Prostate tumor attenuation in the nu/nu murine model due to anti-sarcosine antibodies in folate-targeted liposomes. Sci. Rep. 6, 33379 (2016). https://doi.org/10.1038/srep33379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Y. Yan, L. Chang, H. Tian, L. Wang, Y. Zhang, T. Yang, G. Li, W. Hu, K. Shah, G. Chen, Y. Guo, 1-Pyrroline-5-carboxylate released by prostate Cancer cell inhibit T cell proliferation and function by targeting SHP1/cytochrome c oxidoreductase/ROS Axis. J. Immunother Cancer 6(1), 148 (2018). https://doi.org/10.1186/s40425-018-0466-z

    Article  PubMed  PubMed Central  Google Scholar 

  172. T. Zeng, L. Zhu, M. Liao, W. Zhuo, S. Yang, W. Wu, D. Wang, Knockdown of PYCR1 inhibits cell proliferation and colony formation via cell cycle arrest and apoptosis in prostate cancer. Med. Oncol. 34(2), 27 (2017). https://doi.org/10.1007/s12032-016-0870-5

    Article  CAS  PubMed  Google Scholar 

  173. C.A. Changou, Y.R. Chen, L. Xing, Y. Yen, F.Y. Chuang, R.H. Cheng, R.J. Bold, D.K. Ann, H.J. Kung, Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl. Acad. Sci. U. S. A. 111(39), 14147–14152 (2014). https://doi.org/10.1073/pnas.1404171111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. B.Y. Shorning, M.S. Dass, M.J. Smalley, H.B. Pearson, The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 21(12) (2020). https://doi.org/10.3390/ijms21124507

  175. J. Chen, P. Shao, Q. Cao, P. Li, J. Li, H. Cai, J. Zhu, M. Wang, Z. Zhang, C. Qin, C. Yin, Genetic variations in a PTEN/AKT/mTOR axis and prostate cancer risk in a Chinese population. PLoS ONE 7(7), e40817 (2012). https://doi.org/10.1371/journal.pone.0040817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. D. Campa, A. Husing, A. Stein, L. Dostal, H. Boeing, T. Pischon, A. Tjonneland, N. Roswall, K. Overvad, J.N. Ostergaard, L. Rodriguez, N. Sala, M.J. Sanchez, N. Larranaga, J.M. Huerta, A. Barricarte, K.T. Khaw, N. Wareham, R.C. Travis, N.E. Allen, P. Lagiou, A. Trichopoulou, D. Trichopoulos, D. Palli, S. Sieri, R. Tumino, C. Sacerdote, H. van Kranen, H.B. Bueno-de-Mesquita, G. Hallmans, M. Johansson, I. Romieu, M. Jenab, D.G. Cox, A. Siddiq, E. Riboli, F. Canzian, R. Kaaks, Genetic variability of the mTOR pathway and prostate cancer risk in the European Prospective Investigation on Cancer (EPIC). PLoS ONE 6(2), e16914 (2011). https://doi.org/10.1371/journal.pone.0016914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. B. Bhattacharya, P. Home, A. Ganguly, S. Ray, A. Ghosh, M.R. Islam, V. French, C. Marsh, S. Gunewardena, H. Okae, T. Arima, S. Paul, Atypical protein kinase C iota (PKClambda/iota) ensures mammalian development by establishing the maternal-fetal exchange interface. Proc. Natl. Acad. Sci. U. S. A. 117(25), 14280–14291 (2020). https://doi.org/10.1073/pnas.1920201117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. C. Cao, T. Subhawong, J.M. Albert, K.W. Kim, L. Geng, K.R. Sekhar, Y.J. Gi, B. Lu, Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 66(20), 10040–10047 (2006). https://doi.org/10.1158/0008-5472.CAN-06-0802

    Article  CAS  PubMed  Google Scholar 

  179. P. Toren, S. Kim, T. Cordonnier, C. Crafter, B.R. Davies, L. Fazli, M.E. Gleave, A. Zoubeidi, Combination AZD5363 with enzalutamide significantly delays enzalutamide-resistant prostate cancer in preclinical models. Eur. Urol. 67(6), 986–990 (2015). https://doi.org/10.1016/j.eururo.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  180. W. Wang, T. Shen, B. Dong, C.J. Creighton, Y. Meng, W. Zhou, Q. Shi, H. Zhou, Y. Zhang, D.D. Moore, F. Yang, MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J. Clin. Invest. 129(3), 1015–1029 (2019). https://doi.org/10.1172/JCI97712

    Article  PubMed  PubMed Central  Google Scholar 

  181. Z. Lu, S. Xu, ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58(11), 621–631 (2006). https://doi.org/10.1080/15216540600957438

    Article  CAS  PubMed  Google Scholar 

  182. L. Yuan, X. Sheng, A.K. Willson, D.R. Roque, J.E. Stine, H. Guo, H.M. Jones, C. Zhou, V.L. Bae-Jump, Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway. Endocr. Relat. Cancer 22(4), 577–591 (2015). https://doi.org/10.1530/ERC-15-0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. N. Floc’h, C.W. Kinkade, T. Kobayashi, A. Aytes, C. Lefebvre, A. Mitrofanova, R.D. Cardiff, A. Califano, M.M. Shen, C. Abate-Shen, Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res. 72(17), 4483–4493 (2012). https://doi.org/10.1158/0008-5472.CAN-12-0283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. S.J. Kwon, Y.J. Lee, Effect of low glutamine/glucose on hypoxia-induced elevation of hypoxia-inducible factor-1alpha in human pancreatic cancer MiaPaCa-2 and human prostatic cancer DU-145 cells. Clin. Cancer Res. 11(13), 4694–4700 (2005). https://doi.org/10.1158/1078-0432.CCR-04-2530

    Article  CAS  PubMed  Google Scholar 

  185. L. Sleire, H.E. Forde, I.A. Netland, L. Leiss, B.S. Skeie, P.O. Enger, Drug repurposing in cancer. Pharmacol. Res. 124, 74–91 (2017). https://doi.org/10.1016/j.phrs.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  186. S. Pushpakom, F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, M. Pirmohamed, Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18(1), 41–58 (2019). https://doi.org/10.1038/nrd.2018.168

    Article  CAS  PubMed  Google Scholar 

  187. D. Juarez-Lopez, A. Schcolnik-Cabrera, Drug repurposing: considerations to surpass while re-directing old compounds for new treatments. Arch. Med. Res. 52(3), 243–251 (2021). https://doi.org/10.1016/j.arcmed.2020.10.021

    Article  CAS  PubMed  Google Scholar 

  188. A. Schcolnik-Cabrera, G. Dominguez-Gomez, A. Duenas-Gonzalez, Comparison of DNA demethylating and histone deacetylase inhibitors hydralazine-valproate versus vorinostat-decitabine incutaneous t-cell lymphoma in HUT78 cells. Am. J. Blood Res. 8(2), 5–16 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  189. C.K. Singh, M.A. Ndiaye, N. Ahmad, Resveratrol and cancer: challenges for clinical translation. Biochim. Biophys. Acta 1852(6), 1178–1185 (2015). https://doi.org/10.1016/j.bbadis.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  190. W.M. Al-Madhagi, N.M. Hashim, N.A. Awadh Ali, H. Taha, A.A. Alhadi, A.A. Abdullah, O. Sharhan, R. Othman, Bioassay-guided isolation and in silico study of antibacterial compounds from petroleum ether extract of peperomia blanda (Jacq.) Kunth. J. Chem. Inf. Model 59(5), 1858–1872 (2019). https://doi.org/10.1021/acs.jcim.8b00969

    Article  CAS  PubMed  Google Scholar 

  191. Q. Wang, R.A. Hardie, A.J. Hoy, M. van Geldermalsen, D. Gao, L. Fazli, M.C. Sadowski, S. Balaban, M. Schreuder, R. Nagarajah, J.J. Wong, C. Metierre, N. Pinello, N.J. Otte, M.L. Lehman, M. Gleave, C.C. Nelson, C.G. Bailey, W. Ritchie, J.E. Rasko, J. Holst, Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J. Pathol. 236(3), 278–289 (2015). https://doi.org/10.1002/path.4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. G. Forlani, G. Sabbioni, D. Ragno, D. Petrollino, M. Borgatti, Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells. J. Enzyme Inhib. Med. Chem. 36(1), 1248–1257 (2021). https://doi.org/10.1080/14756366.2021.1919890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Alejandro Schcolnik-Cabrera would like to thank the Fonds de Recherche Santé du Québec (FRQS) for the postdoctoral fellowship provided (307595). Daniel Juárez-López would like to thank CONACyT-México for the scholarship provided (388590/288329), and to the Programa de Posgrado en Ciencias Biológicas, Plan de Doctorado en Ciencias Biológicas, UNAM.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Alejandro Schcolnik-Cabrera; literature search: Alejandro Schcolnik-Cabrera; writing: Alejandro Schcolnik-Cabrera and Daniel Juárez-López; image preparation: Daniel Juárez-López. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Alejandro Schcolnik-Cabrera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consented to the publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schcolnik-Cabrera, A., Juárez-López, D. Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol. 45, 831–859 (2022). https://doi.org/10.1007/s13402-022-00706-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00706-4

Keywords

Navigation