Skip to main content

Advertisement

Log in

CDK7 inhibition as a promising therapeutic strategy for lung squamous cell carcinomas with a SOX2 amplification

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Despite the development of molecular targeted therapies, few advances have been made in the treatment of lung squamous cell carcinoma (SCC). SOX2 amplification is one of the most common genetic alterations in SCC. Here, we investigated the effects of THZ1, a potent cyclin-dependent kinase 7 (CDK7) inhibitor that plays a key role in gene transcription, in SCC.

Methods

Lung SCC-derived cell viabilities were assessed using a CCK-8 assay. SOX2 expression and RNAPII-CTD phosphorylation levels after THZ1 treatment were determined by Western blotting. The effect of SOX2 suppression using shRNA was assessed by flow cytometry. Gene expression patterns after THZ1 treatment of lung SCC-derived cells were identified using microarray-based mRNA profiling.

Results

We found that THZ1 treatment led to suppression of cell growth and apoptotic cell death in SOX2-amplified SCC-derived cells only, whereas the modest growth-inhibitory effect of cisplatin did not differ according to SOX2 amplification status. We also found that THZ1 decreased the phosphorylation of the carboxyl-terminal domain of RNA polymerase II and the expression of several genes. Specifically, we found that the expression of transcription-associated genes, including SOX2, was down-regulated by THZ1 in SOX2-amplified SCC cells. This inhibition of SOX2 expression resulted in suppression of the growth of these cells.

Conclusions

From our data, we conclude that THZ1 may effectively control the proliferation and survival of SOX2-amplified SCC cells through a decrease in global transcriptional activity, suggesting that CDK7 inhibition leading to transcription suppression may be a promising therapeutic option for lung SCC with a SOX2 amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Global Burden of Disease Cancer, C. Fitzmaurice, D. Dicker, A. Pain, H. Hamavid, M. Moradi-Lakeh, M.F. MacIntyre, C. Allen, G. Hansen, R. Woodbrook, C. Wolfe, R.R. Hamadeh, A. Moore, A. Werdecker, B.D. Gessner, B. Te Ao, B. McMahon, C. Karimkhani, C. Yu, G.S. Cooke, D.C. Schwebel, D.O. Carpenter, D.M. Pereira, D. Nash, D.S. Kazi, D. De Leo, D. Plass, K.N. Ukwaja, G.D. Thurston, K.Y. Jin, E.P. Simard, E. Mills, E.K. Park, F. Catala-Lopez, G. deVeber, C. Gotay, G. Khan, H.D. Hosgood 3rd, I.S. Santos, J.L. Leasher, J. Singh, J. Leigh, J.B. Jonas, J. Sanabria, J. Beardsley, K.H. Jacobsen, K. Takahashi, R.C. Franklin, L. Ronfani, M. Montico, L. Naldi, M. Tonelli, J. Geleijnse, M. Petzold, M.G. Shrime, M. Younis, N. Yonemoto, N. Breitborde, P. Yip, F. Pourmalek, P.A. Lotufo, A. Esteghamati, G.J. Hankey, R. Ali, R. Lunevicius, R. Malekzadeh, R. Dellavalle, R. Weintraub, R. Lucas, R. Hay, D. Rojas-Rueda, R. Westerman, S.G. Sepanlou, S. Nolte, S. Patten, S. Weichenthal, S.F. Abera, S.M. Fereshtehnejad, I. Shiue, T. Driscoll, T. Vasankari, U. Alsharif, V. Rahimi-Movaghar, V.V. Vlassov, W.S. Marcenes, W. Mekonnen, Y.A. Melaku, Y. Yano, A. Artaman, I. Campos, J. MacLachlan, U. Mueller, D. Kim, M. Trillini, B. Eshrati, H.C. Williams, K. Shibuya, R. Dandona, K. Murthy, B. Cowie, A.T. Amare, C.A. Antonio, C. Castaneda-Orjuela, C.H. van Gool, F. Violante, I.H. Oh, K. Deribe, K. Soreide, L. Knibbs, M. Kereselidze, M. Green, R. Cardenas, N. Roy, T. Tillmann, Y. Li, H. Krueger, L. Monasta, S. Dey, S. Sheikhbahaei, N. Hafezi-Nejad, G.A. Kumar, C.T. Sreeramareddy, L. Dandona, H. Wang, S.E. Vollset, A. Mokdad, J.A. Salomon, R. Lozano, T. Vos, M. Forouzanfar, A. Lopez, C. Murray, M. Naghavi, The global burden of cancer 2013. JAMA Oncol. 1, 505–527 (2015)

  2. A.D. Panani, C. Roussos, Cytogenetic and molecular aspects of lung cancer. Cancer Lett. 239, 1–9 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. J.Y. Park, S.H. Jang, Epidemiology of lung cancer in Korea: Recent trends. Tuberc. Respir. Dis. (Seoul) 79, 58–69 (2016)

    Article  Google Scholar 

  4. S.A. Kenfield, E.K. Wei, M.J. Stampfer, B.A. Rosner, G.A. Colditz, Comparison of aspects of smoking among the four histological types of lung cancer. Tob. Control. 17, 198–204 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. G.Z. Wang, X. Cheng, X.C. Li, Y.Q. Liu, X.Q. Wang, X. Shi, Z.Y. Wang, Y.Q. Guo, Z.S. Wen, Y.C. Huang, G.B. Zhou, Tobacco smoke induces production of chemokine CCL20 to promote lung cancer. Cancer Lett. 363, 60–70 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. E.H. Jeong, T.G. Lee, Y.J. Ko, S.Y. Kim, H.R. Kim, H. Kim, C.H. Kim, Anti-tumor effect of CDK inhibitors on CDKN2A-defective squamous cell lung cancer cells. Cell. Oncol. 41, 663–675 (2018)

  7. P. Perez-Moreno, E. Brambilla, R. Thomas, J.C. Soria, Squamous cell carcinoma of the lung: Molecular subtypes and therapeutic opportunities. Clin. Cancer Res. 18, 2443–2451 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. J. Tayou, Identification of subsets of actionable genetic alterations in KRAS-mutant lung cancers using association rule mining. Cell. Oncol. 41, 395–408 (2018)

  9. D. Tao, X. Han, N. Zhang, D. Lin, D. Wu, X. Zhu, W. Song, Y. Shi, Genetic alteration profiling of patients with resected squamous cell lung carcinomas. Oncotarget 7, 36590–36601 (2016)

    PubMed  PubMed Central  Google Scholar 

  10. T. Fukazawa, M. Guo, N. Ishida, T. Yamatsuji, M. Takaoka, E. Yokota, M. Haisa, N. Miyake, T. Ikeda, T. Okui, N. Takigawa, Y. Maeda, Y. Naomoto, SOX2 suppresses CDKN1A to sustain growth of lung squamous cell carcinoma. Sci. Rep. 6, 20113 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Kim, P.S. Hammerman, J. Kim, J.A. Yoon, Y. Lee, J.M. Sun, M.D. Wilkerson, C.S. Pedamallu, K. Cibulskis, Y.K. Yoo, M.S. Lawrence, P. Stojanov, S.L. Carter, A. McKenna, C. Stewart, A.Y. Sivachenko, I.J. Oh, H.K. Kim, Y.S. Choi, K. Kim, Y.M. Shim, K.S. Kim, S.Y. Song, K.J. Na, Y.L. Choi, D.N. Hayes, J. Kim, S. Cho, Y.C. Kim, J.S. Ahn, M.J. Ahn, G. Getz, M. Meyerson, K. Park, Integrative and comparative genomic analysis of lung squamous cell carcinomas in east Asian patients. J. Clin. Oncol. 32, 121–128 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)

    Article  CAS  Google Scholar 

  13. R. Govindan, L. Ding, M. Griffith, J. Subramanian, N.D. Dees, K.L. Kanchi, C.A. Maher, R. Fulton, L. Fulton, J. Wallis, K. Chen, J. Walker, S. McDonald, R. Bose, D. Ornitz, D. Xiong, M. You, D.J. Dooling, M. Watson, E.R. Mardis, R.K. Wilson, Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.R. Gandara, P.S. Hammerman, M.L. Sos, P.N. Lara Jr., F.R. Hirsch, Squamous cell lung cancer: From tumor genomics to cancer therapeutics. Clin. Cancer Res. 21, 2236–2243 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.S. Akhtar, M. Heidemann, J.R. Tietjen, D.W. Zhang, R.D. Chapman, D. Eick, A.Z. Ansari, TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Larochelle, R. Amat, K. Glover-Cutter, M. Sanso, C. Zhang, J.J. Allen, K.M. Shokat, D.L. Bentley, R.P. Fisher, Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108–1115 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Ganuza, C. Saiz-Ladera, M. Canamero, G. Gomez, R. Schneider, M.A. Blasco, D. Pisano, J.M. Paramio, D. Santamaria, M. Barbacid, Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J. 31, 2498–2510 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N. Kwiatkowski, T. Zhang, P.B. Rahl, B.J. Abraham, J. Reddy, S.B. Ficarro, A. Dastur, A. Amzallag, S. Ramaswamy, B. Tesar, C.E. Jenkins, N.M. Hannett, D. McMillin, T. Sanda, T. Sim, N.D. Kim, T. Look, C.S. Mitsiades, A.P. Weng, J.R. Brown, C.H. Benes, J.A. Marto, R.A. Young, N.S. Gray, Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S.A. Greenall, Y.C. Lim, C.B. Mitchell, K.S. Ensbey, B.W. Stringer, A.L. Wilding, G.M. O'Neill, K.L. McDonald, D.J. Gough, B.W. Day, T.G. Johns, Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma. Oncogenesis 6, e336 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. B. Li, T. Ni Chonghaile, Y. Fan, S.F. Madden, R. Klinger, A.E. O'Connor, L. Walsh, G. O'Hurley, G. Mallya Udupi, J. Joseph, F. Tarrant, E. Conroy, A. Gaber, S.F. Chin, H.A. Bardwell, E. Provenzano, J. Crown, T. Dubois, S. Linn, K. Jirstrom, C. Caldas, D.P. O'Connor, W.M. Gallagher, Therapeutic rationale to target highly expressed CDK7 conferring poor outcomes in triple-negative breast cancer. Cancer Res. 77, 3834–3845 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Wang, T. Zhang, N. Kwiatkowski, B.J. Abraham, T.I. Lee, S. Xie, H. Yuzugullu, T. Von, H. Li, Z. Lin, D.G. Stover, E. Lim, Z.C. Wang, J.D. Iglehart, R.A. Young, N.S. Gray, J.J. Zhao, CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163, 174–186 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C.L. Christensen, N. Kwiatkowski, B.J. Abraham, J. Carretero, F. Al-Shahrour, T. Zhang, E. Chipumuro, G.S. Herter-Sprie, E.A. Akbay, A. Altabef, J. Zhang, T. Shimamura, M. Capelletti, J.B. Reibel, J.D. Cavanaugh, P. Gao, Y. Liu, S.R. Michaelsen, H.S. Poulsen, A.R. Aref, D.A. Barbie, J.E. Bradner, R.E. George, N.S. Gray, R.A. Young, K.K. Wong, Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Augert, D. MacPherson, Treating transcriptional addiction in small cell lung cancer. Cancer Cell 26, 783–784 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. H.L. Franco, W.L. Kraus, No driver behind the wheel? Targeting transcription in cancer. Cell 163, 28–30 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. I.I. Wistuba, A.F. Gazdar, J.D. Minna, Molecular genetics of small cell lung carcinoma. Semin. Oncol. 28, 3–13 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. J. George, J.S. Lim, S.J. Jang, Y. Cun, L. Ozretic, G. Kong, F. Leenders, X. Lu, L. Fernandez-Cuesta, G. Bosco, C. Muller, I. Dahmen, N.S. Jahchan, K.S. Park, D. Yang, A.N. Karnezis, D. Vaka, A. Torres, M.S. Wang, J.O. Korbel, R. Menon, S.M. Chun, D. Kim, M. Wilkerson, N. Hayes, D. Engelmann, B. Putzer, M. Bos, S. Michels, I. Vlasic, D. Seidel, B. Pinther, P. Schaub, C. Becker, J. Altmuller, J. Yokota, T. Kohno, R. Iwakawa, K. Tsuta, M. Noguchi, T. Muley, H. Hoffmann, P.A. Schnabel, I. Petersen, Y. Chen, A. Soltermann, V. Tischler, C.M. Choi, Y.H. Kim, P.P. Massion, Y. Zou, D. Jovanovic, M. Kontic, G.M. Wright, P.A. Russell, B. Solomon, I. Koch, M. Lindner, L.A. Muscarella, A. la Torre, J.K. Field, M. Jakopovic, J. Knezevic, E. Castanos-Velez, L. Roz, U. Pastorino, O.T. Brustugun, M. Lund-Iversen, E. Thunnissen, J. Kohler, M. Schuler, J. Botling, M. Sandelin, M. Sanchez-Cespedes, H.B. Salvesen, V. Achter, U. Lang, M. Bogus, P.M. Schneider, T. Zander, S. Ansen, M. Hallek, J. Wolf, M. Vingron, Y. Yatabe, W.D. Travis, P. Nurnberg, C. Reinhardt, S. Perner, L. Heukamp, R. Buttner, S.A. Haas, E. Brambilla, M. Peifer, J. Sage, R.K. Thomas, Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. V.G. Abramson, I.A. Mayer, Molecular heterogeneity of triple negative breast cancer. Curr. Breast Cancer Rep. 6, 154–158 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A.J. Bass, H. Watanabe, C.H. Mermel, S. Yu, S. Perner, R.G. Verhaak, S.Y. Kim, L. Wardwell, P. Tamayo, I. Gat-Viks, A.H. Ramos, M.S. Woo, B.A. Weir, G. Getz, R. Beroukhim, M. O'Kelly, A. Dutt, O. Rozenblatt-Rosen, P. Dziunycz, J. Komisarof, L.R. Chirieac, C.J. Lafargue, V. Scheble, T. Wilbertz, C. Ma, S. Rao, H. Nakagawa, D.B. Stairs, L. Lin, T.J. Giordano, P. Wagner, J.D. Minna, A.F. Gazdar, C.Q. Zhu, M.S. Brose, I. Cecconello, U. Ribeiro Jr., S.K. Marie, O. Dahl, R.A. Shivdasani, M.S. Tsao, M.A. Rubin, K.K. Wong, A. Regev, W.C. Hahn, D.G. Beer, A.K. Rustgi, M. Meyerson, SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Lu, C. Futtner, J.R. Rock, X. Xu, W. Whitworth, B.L. Hogan, M.W. Onaitis, Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 5, e11022 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. Hussenet, S. Dali, J. Exinger, B. Monga, B. Jost, D. Dembele, N. Martinet, C. Thibault, J. Huelsken, E. Brambilla, S. du Manoir, SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 5, e8960 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. W. Huang da, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. W. Huang da, B.T. Sherman, R.A. Lempicki, Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. D. Gerlach, U. Tontsch-Grunt, A. Baum, J. Popow, D. Scharn, M.H. Hofmann, H. Engelhardt, O. Kaya, J. Beck, N. Schweifer, T. Gerstberger, J. Zuber, F. Savarese, N. Kraut, The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene 37, 2687–2701 (2018)

  34. E. Chipumuro, E. Marco, C.L. Christensen, N. Kwiatkowski, T. Zhang, C.M. Hatheway, B.J. Abraham, B. Sharma, C. Yeung, A. Altabef, A. Perez-Atayde, K.K. Wong, G.C. Yuan, N.S. Gray, R.A. Young, R.E. George, CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Chen, X. Li, D. Lu, Y. Xu, W. Mou, L. Wang, Y. Chen, Y. Liu, X. Li, L.Y. Li, L. Liu, D. Stupack, R.A. Reisfeld, R. Xiang, N. Li, SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 35, 613–623 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. J. Yuan, Y.Y. Jiang, A. Mayakonda, M. Huang, L.W. Ding, H. Lin, F. Yu, Y. Lu, T.K.S. Loh, M. Chow, S. Savage, J.W. Tyner, D.C. Lin, H.P. Koeffler, Super-enhancers promote transcriptional dysregulation in nasopharyngeal carcinoma. Cancer Res. 77, 6614–6626 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. Eliades, B.J. Abraham, Z. Ji, D.M. Miller, C.L. Christensen, N. Kwiatkowski, R. Kumar, C.N. Njauw, M. Taylor, B. Miao, T. Zhang, K.K. Wong, N.S. Gray, R.A. Young, H. Tsao, High MITF expression is associated with super-enhancers and suppressed by CDK7 inhibition in melanoma. J. Invest. Dermatol. 138, 1582–1590 (2018)

  38. R.L. Grossman, A.P. Heath, V. Ferretti, H.E. Varmus, D.R. Lowy, W.A. Kibbe, L.M. Staudt, Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  39. International Cancer Genome Consortium, ICGC Data Portal. (2016) https://dcc.icgc.org/. Accessed 12 Feb 2019

  40. National Institutes of Health, National Cancer Institute and National Human Genome Research Institute, Lung Squamous Cell Carcinoma. (2013) https://cancergenome.nih.gov/cancersselected/lungsquamouscell. Accessed 12 Feb 2019

  41. Y. Wang, C.Y. Qian, X.P. Li, Y. Zhang, H. He, J. Wang, J. Chen, J.J. Cui, R. Liu, H. Zhou, L. Xiao, X.J. Xu, Y. Zheng, Y.L. Fu, Z.Y. Chen, X. Chen, W. Zhang, C.C. Ye, H.H. Zhou, J.Y. Yin, Z.Q. Liu, Genome-scale long noncoding RNA expression pattern in squamous cell lung cancer. Sci. Rep. 5, 11671 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  42. J. Brahmer, K.L. Reckamp, P. Baas, L. Crino, W.E. Eberhardt, E. Poddubskaya, S. Antonia, A. Pluzanski, E.E. Vokes, E. Holgado, D. Waterhouse, N. Ready, J. Gainor, O. Aren Frontera, L. Havel, M. Steins, M.C. Garassino, J.G. Aerts, M. Domine, L. Paz-Ares, M. Reck, C. Baudelet, C.T. Harbison, B. Lestini, D.R. Spigel, Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L.A. Pennacchio, W. Bickmore, A. Dean, M.A. Nobrega, G. Bejerano, Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D. Hnisz, B.J. Abraham, T.I. Lee, A. Lau, V. Saint-Andre, A.A. Sigova, H.A. Hoke, R.A. Young, Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. I. Sur, J. Taipale, The role of enhancers in cancer. Nat. Rev. Cancer 16, 483–493 (2016)

    Article  CAS  PubMed  Google Scholar 

  46. J.T. Wade, K. Struhl, The transition from transcriptional initiation to elongation. Curr. Opin. Genet. Dev. 18, 130–136 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K.A. Nilson, J. Guo, M.E. Turek, J.E. Brogie, E. Delaney, D.S. Luse, D.H. Price, THZ1 reveals roles for Cdk7 in co-transcriptional capping and pausing. Mol. Cell 59, 576–587 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B.J. Venters, B.F. Pugh, How eukaryotic genes are transcribed. Crit. Rev. Biochem. Mol. Biol. 44, 117–141 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R. Di Micco, B. Fontanals-Cirera, V. Low, P. Ntziachristos, S.K. Yuen, C.D. Lovell, I. Dolgalev, Y. Yonekubo, G. Zhang, E. Rusinova, G. Gerona-Navarro, M. Canamero, M. Ohlmeyer, I. Aifantis, M.M. Zhou, A. Tsirigos, E. Hernando, Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell. Rep. 9, 234–247 (2014)

  50. L.L. Fu, M. Tian, X. Li, J.J. Li, J. Huang, L. Ouyang, Y. Zhang, B. Liu, Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 6, 5501–5516 (2015)

    PubMed  PubMed Central  Google Scholar 

  51. M.C. Patel, M. Debrosse, M. Smith, A. Dey, W. Huynh, N. Sarai, T.D. Heightman, T. Tamura, K. Ozato, BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol. Cell. Biol. 33, 2497–2507 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Financial support

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1DA1A01057022 to JKR) and a grant (2016–689 to HRK and 2016–709 to JCL) from the Asan Institute for Life Sciences, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Contributions

JYH, HRK, JKR and JCL conceived and designed the study. JYH performed the experiments. JYH, HRK, JKR, JYL, SP, JAH, WSK, SY and C-MC analyzed the data. JYH, JKR and JCL wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Jin Kyung Rho or Jae Cheol Lee.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, J.Y., Kim, H.R., Lee, J.Y. et al. CDK7 inhibition as a promising therapeutic strategy for lung squamous cell carcinomas with a SOX2 amplification. Cell Oncol. 42, 449–458 (2019). https://doi.org/10.1007/s13402-019-00434-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-019-00434-2

Keywords

Navigation