Skip to main content

Advertisement

Log in

A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Stathmin, a microtubule associated protein (MAP), is an important molecular target for cancer therapy. Paclitaxel is one of the primary antitumor drugs targeting microtubules (MTs). We hypothesized that decreasing the expression level of Stathmin might improve the effectiveness of paclitaxel in the treatment of nasopharyngeal carcinoma (NPC).

Methods

NPC cell lines, CNE1-LMP1 and HNE2, and a CNE1-LMP1 tumor xenograft mouse model were used to test both in vitro and in vivo our siRNA-based Stathmin silencing strategy. The effects of Stathmin silencing on cell proliferation, apoptosis, and viability were investigated using MTT, AO/EB staining, TUNEL, caspase protein detection, and FCM assays. Cell migration and invasion were assayed using a Transwell assay. The combined effects of Stathmin silencing and paclitaxel were investigated using MTT, FCM, Western blot and indirect immunofluorescence assays. The effect of paclitaxel on Stathmin expression in NPC cells and, in addition, A375, MGC and HeLa cells was determined by RT-PCR and Western blotting.

Results

We found that siRNA-mediated silencing of Stathmin suppresses proliferation, induces apoptosis through the mitochondrial pathway, and causes G2/M-phase cell cycle arrest in the NPC cell lines CNE1-LMP1 and HNE2. Also, the migration and invasion of the respective NPC cells were found to be inhibited. In addition, we show that a combination of Stathmin silencing and paclitaxel is more effective than either agent alone in inhibiting proliferation and inducing apoptosis, cell cycle arrest, and MT polymerization. Furthermore, we found that Stathmin expression in the tumor cells is down-regulated by paclitaxel treatment.

Conclusion

siRNA-mediated silencing of Stathmin suppresses the proliferation, invasion and metastasis, and induces the apoptosis of NPC cells. Paclitaxel reduces the expression of Stathmin, and combining Stathmin silencing with paclitaxel treatment enhances MT polymerization. This combined strategy may provide a new approach for clinical NPC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Trovik, E. Wik, I.M. Stefansson, J. Marcickiewicz, S. Tingulstad, A.C. Staff, T.S. Njolstad, I. Vandenput, F. Amant, L.A. Akslen, H.B. Salvesen, Stathmin Overexpression Identifies High-Risk Patients and Lymph Node Metastasis in Endometrial Cancer. Clin Cancer Res 17, 3368–3377 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. A. Tradonsky, T. Rubin, R. Beck, B. Ring, R. Seitz, S. Mair, A search for reliable molecular markers of prognosis in prostate cancer: a study of 240 cases. Am J Clin Pathol 137, 918–930 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. M.T. Baquero, J.A. Hanna, V. Neumeister, H. Cheng, A.M. Molinaro, L.N. Harris, D.L. Rimm, Stathmin expression and its relationship to microtubule-associated protein tau and outcome in breast cancer. Cancer 118, 4660–4669 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. F. Liu, Y.L. Sun, Y. Xu, L.S. Wang, X.H. Zhao, Expression and phosphorylation of stathmin correlate with cell migration in esophageal squamous cell carcinoma. Oncol Rep 29, 419–424 (2013)

    CAS  PubMed  Google Scholar 

  5. Y. Wang, Y. Kuramitsu, T. Ueno, N. Suzuki, S. Yoshino, N. Iizuka, X. Zhang, J. Akada, M. Oka, K. Nakamura, Proteomic differential display identifies upregulated vinculin as a possible biomarker of pancreatic cancer. Oncol Rep 28, 1845–1850 (2012)

    CAS  PubMed  Google Scholar 

  6. W. Kang, J.H. Tong, A.W. Chan, R.W. Lung, S.L. Chau, Q.W. Wong, N. Wong, J. Yu, A.S. Cheng, K.F. To, Stathmin1 plays oncogenic role and is a target of microRNA-223 in gastric cancer. PLoS One 7, e33919 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. H.T. Tan, W. Wu, Y.Z. Ng, X. Zhang, B. Yan, C.W. Ong, S. Tan, M. Salto-Tellez, S.C. Hooi, M.C. Chung, Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker. J Proteome Res 11, 1433–1445 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. L. Jiang, Y.K. Lai, J.F. Zhang, C.Y. Chan, G. Lu, M.C. Lin, M.L. He, J.C. Li, H.F. Kung, Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-beta-susceptible hepatocellular carcinoma cells. World J Gastroenterol 18, 2035–2042 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Z. Xiao, G. Li, Y. Chen, M. Li, F. Peng, C. Li, F. Li, Y. Yu, Y. Ouyang, Z. Chen, Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. J Histochem Cytochem 58, 517–527 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. G. Yan, L. Li, Y. Tao, S. Liu, Y. Liu, W. Luo, Y. Wu, M. Tang, Z. Dong, Y. Cao, Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology. Proteomics 6, 1810–1821 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. X. Lin, S. Liu, X. Luo, X. Ma, L. Guo, L. Li, Z. Li, Y. Tao, Y. Cao, EBV-encoded LMP1 regulates Op18/stathmin signaling pathway by cdc2 mediation in nasopharyngeal carcinoma cells. Int J Cancer 124, 1020–1027 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. X. Lin, M. Tang, Y. Tao, L. Li, S. Liu, L. Guo, Z. Li, X. Ma, J. Xu, Y. Cao, Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated Op18/stathmin signaling pathway in association with cell cycle. Cancer Sci 103, 993–999 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. B. Belletti, M.S. Nicoloso, M. Schiappacassi, S. Berton, F. Lovat, K. Wolf, V. Canzonieri, S. D’Andrea, A. Zucchetto, P. Friedl, A. Colombatti, G. Baldassarre, Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell 19, 2003–2013 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. X.L. Meng, D. Su, L. Wang, Y. Gao, Y.J. Hu, H.J. Yang, S.N. Xie, Low expression of stathmin in tumor predicts high response to neoadjuvant chemotherapy with docetaxel-containing regimens in locally advanced breast cancer. Genet Test Mol Biomarkers 16, 689–694 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. F. Ge, C.L. Xiao, L.J. Bi, S.C. Tao, S. Xiong, X.F. Yin, L.P. Li, C.H. Lu, H.T. Jia, Q.Y. He, Quantitative phosphoproteomics of proteasome inhibition in multiple myeloma cells. PLoS One 5, e13095 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  16. Y.J. Cui, S.H. Guan, L.X. Feng, X.Y. Song, C. Ma, C.R. Cheng, W.B. Wang, W.Y. Wu, Q.X. Yue, X. Liu, D.A. Guo, Cytotoxicity of 9,11-dehydroergosterol peroxide isolated from Ganoderma lucidum and its target-related proteins. Nat Prod Commun 5, 1183–1186 (2010)

    CAS  PubMed  Google Scholar 

  17. L. Hao, P. Xie, H. Li, G. Li, Q. Xiong, Q. Wang, T. Qiu, Y. Liu, Transcriptional alteration of cytoskeletal genes induced by microcystins in three organs of rats. Toxicon 55, 1378–1386 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. X. Shi, D. Wang, K. Ding, Z. Lu, Y. Jin, J. Zhang, J. Pan, GDP366, a novel small molecule dual inhibitor of survivin and Op18, induces cell growth inhibition, cellular senescence and mitotic catastrophe in human cancer cells. Cancer Biol Ther 9, 640–650 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang, J.H. Ren, F. Lin, J.X. Wei, M. Long, L. Yan, H.Z. Zhang, Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway. Cancer Biol Ther 10, 632–643 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. S.J. Mistry, C.J. Benham, G.F. Atweh, Development of ribozymes that target stathmin, a major regulator of the mitotic spindle. Antisense Nucleic Acid Drug Dev 11, 41–49 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. A.P. Phadke, C.M. Jay, Z. Wang, S. Chen, S. Liu, C. Haddock, P. Kumar, B.O. Pappen, D.D. Rao, N.S. Templeton, E.Q. Daniels, C. Webb, D. Monsma, S. Scott, D. Dylewski, H.B. Frieboes, F.C. Brunicardi, N. Senzer, P.B. Maples, J. Nemunaitis, A.W. Tong, In vivo safety and antitumor efficacy of bifunctional small hairpin RNAs specific for the human Stathmin 1 oncoprotein. DNA Cell Biol 30, 715–726 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. D.D. Rao, P.B. Maples, N. Senzer, P. Kumar, Z. Wang, B.O. Pappen, Y. Yu, C. Haddock, C. Jay, A.P. Phadke, S. Chen, J. Kuhn, D. Dylewski, S. Scott, D. Monsma, C. Webb, A. Tong, D. Shanahan, J. Nemunaitis, Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference. Cancer Gene Ther 17, 780–791 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. R. Wang, K. Dong, F. Lin, X. Wang, P. Gao, S.H. Wei, S.Y. Cheng, H.Z. Zhang, Inhibiting proliferation and enhancing chemosensitivity to taxanes in osteosarcoma cells by RNA interference-mediated downregulation of stathmin expression. Mol Med 13, 567–575 (2007)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. E. Alli, J.M. Yang, J.M. Ford, W.N. Hait, Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breast carcinoma cells. Mol Pharmacol 71, 1233–1240 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. S.Y. Gu, W.P. Tang, Y. Zeng, E.W. Zhao, W.H. Deng, K. Li, An epithelial cell line established from poorly differentiated nasopharyngeal carcinoma (in Chinese). Chin. J. Cancer 2, 70–72 (1983)

    Google Scholar 

  26. A. Albini, Y. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski, R.N. McEwan, A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47, 3239–3245 (1987)

    CAS  PubMed  Google Scholar 

  27. S.Z. Chen, M. Jiang, Y.S. Zhen, HERG K + channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol 56, 212–220 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. P. Zheng, Y.X. Liu, L. Chen, X.H. Liu, Z.Q. Xiao, L. Zhao, G.Q. Li, J. Zhou, Y.Q. Ding, J.M. Li, Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 9, 4897–4905 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. B. Belletti, I. Pellizzari, S. Berton, L. Fabris, K. Wolf, F. Lovat, M. Schiappacassi, S. D’Andrea, M.S. Nicoloso, S. Lovisa, M. Sonego, P. Defilippi, A. Vecchione, A. Colombatti, P. Friedl, G. Baldassarre, p27kip1 controls cell morphology and motility by regulating microtubule-dependent lipid raft recycling. Mol Cell Biol 30, 2229–2240 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. C. Iancu, S.J. Mistry, S. Arkin, G.F. Atweh, Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res 60, 3537–3541 (2000)

    CAS  PubMed  Google Scholar 

  31. R. Balachandran, M.J. Welsh, B.W. Day, Altered levels and regulation of stathmin in paclitaxel-resistant ovarian cancer cells. Oncogene 22, 8924–8930 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. F. Gong, X. Peng, Z. Zeng, M. Yu, Y. Zhao, A. Tong, Proteomic analysis of cisplatin resistance in human ovarian cancer using 2-DE method. Mol Cell Biochem 348, 141–147 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. M. Balasubramani, C. Nakao, G.T. Uechi, J. Cardamone, K. Kamath, K.L. Leslie, R. Balachandran, L. Wilson, B.W. Day, M.A. Jordan, Characterization and detection of cellular and proteomic alterations in stable stathmin-overexpressing, taxol-resistant BT549 breast cancer cells using offgel IEF/PAGE difference gel electrophoresis. Mutat Res 722, 154–164 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. J.R. Carr, H.J. Park, Z. Wang, M.M. Kiefer, P. Raychaudhuri, FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res 70, 5054–5063 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. S. Hasegawa, N. Hirashima, M. Nakanishi, Microtubule involvement in the intracellular dynamics for gene transfection mediated by cationic liposomes. Gene Ther 8, 1669–1673 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. R.R. Nair, J.R. Rodgers, L.A. Schwarz, Enhancement of transgene expression by combining glucocorticoids and anti-mitotic agents during transient transfection using DNA-cationic liposomes. Mol Ther 5, 455–462 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. L.A. Martello, P. Verdier-Pinard, H.J. Shen, L. He, K. Torres, G.A. Orr, S.B. Horwitz, Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res. 63, 1207–1213 (2003)

    CAS  PubMed  Google Scholar 

  38. J. Okano, A.K. Rustgi, Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. J Biol Chem. 276, 19555–19564 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (2009CB521801 and 2011CB504305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Stathmin expression is silenced by si-stathmin in CNE1-LMP1 cells. CNE1-LMP1 cells were transfected with si-vector, si-Mock (as controls) or si-stathmin. si-Stathmin suppresses the expression of stathmin at the mRNA (a) and protein (b) levels in CNE1-LMP1 cells. The accompanying histogram (right) shows the quantitative luminosity values of each lane individually. Total RNA was extracted 24 h after transfection and was then amplified by RT-PCR. Expression of stathmin mRNA was detected with β-actin as an internal control. Meanwhile, total proteins were extracted 24 h after transfection and then examined by Western blot and α-tublin was used as a loading control. The data are shown as the mean ± S.D. of at least three independent experiments performed in duplication. Asterisks (*) indicate a significant decrease in expression of stathmin induced by si-stathmin. (DOC 571 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Tang, M., Wu, Y. et al. A combination of paclitaxel and siRNA-mediated silencing of Stathmin inhibits growth and promotes apoptosis of nasopharyngeal carcinoma cells. Cell Oncol. 37, 53–67 (2014). https://doi.org/10.1007/s13402-013-0163-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-013-0163-3

Keywords

Navigation