Skip to main content

Advertisement

Log in

Biomass valorization and phytoremediation as integrated Technology for Municipal Solid Waste Management for developing economic context

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Municipal solid waste (MSW) has ranked among the most detrimental global issues of the decade, where it has been induced by the population trends, urbanization, and economic growth. The majority of conventional pollution treatment methods involve high capital and maintenance costs with sophisticated instruments and technology. Biomass valorization and phytoremediation has been described to be an effective and practicable alternative for expensive, conventional engineering techniques in managing MSW and remediating contamination. Modern biomass valorization methods are promising technologies that provide effective MSW reduction, at the same time providing measures for removing pollutants from leachate with its particular focus on biochar, which is resulted by torrefaction of the perishable waste. The simultaneous ability of phytoremediation to remove many types of contaminants in leachate by significant amounts is emphasized in the context with considerations to the challenges in the sector. Phytoremediation is limited by several factors such as contaminant specificity, time consumption, and some external factors, while biochar applications are limited due to substrate specificity. The study aimed to review scientific literature to provide a platform for biomass valorization and phytoremediation integration for developing economy context.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buenrostro O, Bocco G, Cram S (2001) Classification of sources of municipal solid wastes in developing countries. Resour Conserv Recycl 32(1):29–41

    Google Scholar 

  2. Shekdar AV (2009) Sustainable solid waste management: an integrated approach for Asian countries. Waste Manag 29(4):1438–1448

    Google Scholar 

  3. Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management, vol 15. World Bank, Washington, DC

    Google Scholar 

  4. Abdel-Shafy HI, Mansour MSM (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Google Scholar 

  5. Mandal K (2019) Review on evolution of municipal solid waste management in India: practices, challenges and policy implications. J Mater Cycles Waste Manag:1–17

  6. Masebinu SO, Akinlabi ET, Muzenda E, Aboyade AO, Mbohwa C, Manyuchi MM et al (2017) A review on factors affecting municipal solid waste generation. In: 2nd International Engineering Conference, Minna, pp 1–6

  7. Gupta N, Yadav KK, Kumar V (2015) A review on current status of municipal solid waste management in India. J Environ Sci 37:206–217

    Google Scholar 

  8. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications, Washington, DC, pp 1–295

    Google Scholar 

  9. Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol 42(15):1509–1630

    Google Scholar 

  10. Eurostat. Waste Statistics [Internet] 2019 [cited 2020 Jun 5]. Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics#Waste_treatment

  11. Agamuthu P (2001) Solid waste: principle and management, With Malaysian Case Studies, University of Malaya, Kuala Lumpur. Inc; . p. 1–395

  12. Adhikari B, Khanal SN (2015) Qualitative study of landfill leachate from different ages of landfill sites of various countries including Nepal. J Environ Sci Toxicol Food Technol 9(1):2319–2399

    Google Scholar 

  13. Kumarathilaka P, Wijesekara H, Bolan N, Kunhikrishnan A, Vithanage M (2017) Phytoremediation of landfill leachates. In: Phytoremediation. Springer, pp 439–467

  14. Naveen BP, Puvvadi S, Sitharam TG (2014) Characteristics of a Municipal Solid Waste Landfill. Proc Indian Geotech Conf IGC-2014. (December 18–20):1–7

  15. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW et al (2019) Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J Hazard Mater:121–649

  16. Mohammadizaroun M, Yusoff MS (2014) Review on landfill leachate treatment using physical-chemical techniques: their performance and limitations. Int J Curr Life Sci Res Artic 4(12):12068–12074

    Google Scholar 

  17. Arancon RAD, Lin CSK, Chan KM, Kwan TH, Luque R (2013) Advances on waste valorization: new horizons for a more sustainable society. Energy Sci Eng 1(2):53–71

    Google Scholar 

  18. Sun W, Zhang S, Su C (2018) Impact of biochar on the bioremediation and phytoremediation of heavy metal (loid) s in soil. Adv Bioremediation Phytoremediation 149

  19. Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park YK (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Google Scholar 

  20. Shehzad A, Bashir MJK, Sethupathi S, Lim J-W (2016) An insight into the remediation of highly contaminated landfill leachate using sea mango based activated bio-char: optimization, isothermal and kinetic studies. Desalin Water Treat 57(47):22244–22257

    Google Scholar 

  21. Gumisiriza R, Hawumba JF, Okure M, Hensel O (2017) Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnol Biofuels:2–29

  22. Slater RA, Frederickson J (2001) Composting municipal waste in the UK: some lessons from Europe. Resour Conserv Recycl 32(3–4):359–374

    Google Scholar 

  23. Alam O, Qiao X (2019) An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh. Sustain Cities Soc 52(2020):3–18

    Google Scholar 

  24. Jayawardhana Y, Kumarathilaka P, Herath I, Vithanage M (2016) Municipal solid waste biochar for prevention of pollution from landfill leachate. In: Environmental materials and waste. Elsevier, pp 117–148

  25. Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339

    Google Scholar 

  26. Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220

    Google Scholar 

  27. Yaghoubi P, Yargicoglu EN, Reddy KR Effects of biochar-amendment to landfill cover soil on microbial methane oxidation: initial results. In: Geotechnical Special Publication. 2014. p. 1849–58

  28. Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á (2019) Municipal solid waste as a source of electric power generation in Colombia: a techno-economic evaluation under different scenarios. Resources. 8(1):51

    Google Scholar 

  29. Gunarathne DS, Udugama IA, Jayawardena S, Gernaey KV, Mansouri SS, Narayana M (2019) Resource recovery from bio-based production processes in developing Asia. Sustain Prod Consum 17:196–214

    Google Scholar 

  30. Havukainen J, Heikkinen S, Horttanainen M (2016) Possibilities to improve the share of material recovery of municipal solid waste in Finland. LUT Sci Expert Publ Reports:1–62

  31. Kumar A, Samadder RS (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422

    Google Scholar 

  32. Zhao X, Jiang G, Li A, Wang L (2016) Economic analysis of waste-to-energy industry in China. Waste Manag 48:604–618

    Google Scholar 

  33. Wiechers AE Pre-feasibility study of using the circulating fluid bed (CFB) waste-to-energy Technology in Mexico City. Columbia University 2015

  34. Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: a review. Fuel. 134(June:389–399

    Google Scholar 

  35. Dolgen D, Sarptas H, Alpaslan N, Kucukgul O (2005 Nov) Energy potential of municipal solid wastes. Energy Sources 27(15):1483–1492

    Google Scholar 

  36. Wickramasinghe DGC, Narayana M, Amarasinghe ADUS (2018) Numerical simulation of suspension biomass combustor with two chambers. In: 2018 Moratuwa engineering research conference (MERCon). IEEE, Moratuwa, pp 226–230

    Google Scholar 

  37. Knoef QP, Stassen H (1999) Energy from biomass, vol 422. World Bank Tech Pap

  38. Wickramasinghe DGC, Narayana M, Witharana S. Optimization of Process Parameters for Organic Municipal Solid Waste Torrefaction. In: Advances in Science and Engineering Technology International Conferences, ASET 2019. IEEE; 2019. p. 1–5

  39. Rönnbäck M, Axell M, Gustavsson L, Thunman H, Lecher B (2008) Combustion Processes in a Biomass Fuel Bed-Experimental Results. In: Bridgwater AV (ed) Progress in Thermochemical Biomass Conversion. Blackwell Science Ltd, Oxford, pp 743–757

    Google Scholar 

  40. Reed TB, Das A Handbook of Biomass Downdraft Gasifier Engine Systems. U. S. Dept. of Energy; 1988. 1–148 p

  41. Aerts DJ, Ragland KW. Pressurized Downdraft Combustion of Woodchips. In: Twenty-Third Symposium (International) on Combustion. The Combustion Institute; 1990. p. 1025–32

  42. Oka SN (2004) In: Anthony EJ (ed) Fluidized bed combustion, 1st edn. Marcel Dekker, New York, p 600

    Google Scholar 

  43. Wickramasinghe DGC, Narayana M, Amarasinghe ADUS (2017) Eulerian-Lagrangian approach for modeling of biomass fluidized bed combustion. In: Vidulka: national energy symposium. Sri Lanka Sustainable Energy Authority, Colombo, pp 209–213

    Google Scholar 

  44. Yin C, Rosendahl LA, Kær SK (2008 Dec) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34(6):725–754

    Google Scholar 

  45. Lombardi F, Lategano E, Cordiner S, Torretta V (2013) Waste incineration in rotary kilns: a new simulation combustion tool to support design and technical change. Waste Manag Res 31(7):739–750

    Google Scholar 

  46. Lam CHK, Ip AWM, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustainability. 2(7):1943–1968

    Google Scholar 

  47. Block C, Ephraim A, Weiss-Hortala E, Minh DP, Nzihou A, Vandecasteele C (2019) Co-pyrogasification of plastics and biomass, a review. Waste and Biomass Valorization 10(3):483–509

    Google Scholar 

  48. Wickramaarachchi WAMKP, Perera KUC, Narayana M (2018) A Numerical Study on Torrefaction of Organic Waste in Sri Lanka. In: IESL 2018, Colombo

  49. Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7(1):1–9

    Google Scholar 

  50. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Google Scholar 

  51. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86(12–13):1781–1788

    Google Scholar 

  52. Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Prog Energy Combust Sci 37(5):611–630

    Google Scholar 

  53. Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of south Asian waste coconut Shell and characterization of gas, bio-char, and bio-oil. Energies. 13(8):1970

    Google Scholar 

  54. Torres-García E, Ramírez-Verduzco LF, Aburto J (2020) Pyrolytic degradation of peanut shell: activation energy dependence on the conversion. Waste Manag 106:203–212

    Google Scholar 

  55. Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91(2):87–102

    Google Scholar 

  56. Salimbeni A (2019) Organic waste streams upgrading for gasification process optimization. In: Materazzi M, Foscolo PU (eds) Substitute Natural Gas from Waste - Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes. Elsevier Inc., pp 75–103

  57. Ronsse F, Nachenius RW, Prins W (2015) Carbonization of Biomass. In: Pandey A, Bhaskar T, Stocker M, Sukumaran RK (eds) Recent Advances in Themrochemical Conversion of Biomass. Elsevier B.V., pp 293–324

  58. Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7(3):233–250

    Google Scholar 

  59. Sadaka S, Negi S (2009) Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy 28(3):427–434

    Google Scholar 

  60. Ramke H-G, Blöhse D, Lehmann H-J, Fettig J (2009) Hydrothermal carbonization of organic waste. In: Cossu R, Diaz LF, Stegmann R (eds) Sardinia 2009: twelfth international waste management and landfill symposium. CISA Publisher, Sardinia, pp 139–148

    Google Scholar 

  61. Rasanjani C, Gunathilaka T, Pieris C, Bandara H, Narayana M (2019) Torrefaction of urban bio waste in Sri Lanka. In: 2019 Moratuwa engineering research conference (MERCon). IEEE, Moratuwa, pp 573–576

    Google Scholar 

  62. Kongprasert N, Wangphanich P, Jutilarptavorn A (2019) Charcoal briquettes from Madan wood waste as an alternative energy in Thailand. In: 14th Global Congress on Manufacturing and Management (GCMM-2018). Elsevier Ltd., pp 128–135

  63. Mitchell PJ, Dalley TSL, Helleur RJ (2013) Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J Anal Appl Pyrolysis 99:71–78

    Google Scholar 

  64. Bogale W (2010) Preparation of charcoal using agricultural wastes. Ethiop J Educ Sci 5(1):18–70

    Google Scholar 

  65. Liu C, Huang X, Kong L (2017) Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density. Energies 10

  66. Kim D, Park KY, Yoshikawa K (2017) Conversion of municipal solid wastes into biochar through hydrothermal carbonization. In: Engineering Applications of Biochar. InTech

  67. Wnukowski M, Owczarek P, Niedźwiecki Ł (2015) Wet Torrefaction of Miscanthus - characterization of Hydrochars in view of handling, storage and combustion properties. J Ecol Eng 16(3):161–167

    Google Scholar 

  68. Bailis R (2009) Modeling climate change mitigation from alternative methods of charcoal production in {Kenya}. Biomass Bioenergy 33(11)

  69. Chen Z, Wang M, Ren Y, Jiang E, Jiang Y, Li W (2018) Biomass torrefaction: a promising pretreatment technology for biomass utilization. IOP Conf Ser Earth Environ Sci 113(1):012201

    Google Scholar 

  70. Pandyaswargo AH, Premakumara DGJ (2014) Financial sustainability of modern composting: the economically optimal scale for municipal waste composting plant in developing {Asia}. Int J Recycl Org Waste Agric 3(3):1–4

    Google Scholar 

  71. Matteson GC, Jenkins BM (2007) Food and processing residues in California: resource assessment and potential for power generation. Bioresour Technol 98:3098–3105

    Google Scholar 

  72. Almendro-Candel MB, Navarro-Pedreño J, Gómez Lucas I, Zorpas AA, Voukkali I, Loizia P (2019) The use of composted municipal solid waste under the concept of circular economy and as a source of plant nutrients and pollutants. In: Municipal Solid Waste Management. IntechOpen

  73. Shah GM, Tufail N, Bakhat HF, Ahmad I, Shahid M, Hammad HM, Nasim W, Waqar A, Rizwan M, Dong R (2019) Composting of municipal solid waste by different methods improved the growth of vegetables and reduced the health risks of cadmium and lead. Environ Sci Pollut Res 26(6):5463–5474

    Google Scholar 

  74. Melikoglu M, Lin C, Webb C (2013) Analysing global food waste problem: pinpointing the facts and estimating the energy content. Open Eng 3(2):157–164

    Google Scholar 

  75. Rynk R On-farm composting handbook. New York: Cooperative State Research, Education, and Extension Service; 1992

  76. Lasaridi K, Protopapa I, Kotsou M, Pilidis G, Manios T, Kyriacou A (2006) Quality assessment of composts in the Greek market: the need for standards and quality assurance. J Environ Manag 80(1):58–65

    Google Scholar 

  77. Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami AI (2018) Composting parameters and compost quality: a literature review. Org Agric 8(2):141–158

    Google Scholar 

  78. Rynk R, van de Kamp M, Willson GB, Singley ME, Richard TL, Kolega JJ et al (1992) In: Rynk R (ed) On-farm composting handbook. Cooperative State Research, Education and Extension Service, New York, p 186

    Google Scholar 

  79. Bajic BŽ, Dodic SN, Vucurovic DG, Dodic JM, Grahovac JA (2015) Waste-to-energy status in Serbia. Renew Sust Energ Rev 50:1437–1444

    Google Scholar 

  80. Melikoglu M (2013) Vision 2023: assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey. Renew Sust Energ Rev 19:52–63

    Google Scholar 

  81. Cho JK, Park SC, Chang HN (1995) Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresour Technol 52(3):245–253

    Google Scholar 

  82. Vandevivere P, De Baere L, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, pp 111–140

  83. Nagao N, Tajima N, Kawai M, Niwa C, Kurosawa N, Matsuyama T, Yusoff FM, Toda T (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol 118:210–218

    Google Scholar 

  84. Park Y, Hong F, Cheon J, Hidaka T, Tsuno H (2008) Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 105(1):48–54

    Google Scholar 

  85. Massanet-Nicolau J, Dinsdale R, Guwy A, Shipley G (2013) Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation. Bioresour Technol 129:561–567

    Google Scholar 

  86. Luz FC, Rocha MH, Lora EES, Venturini OJ, Andrade RV, Leme MMV, del Olmo OA (2015) Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Convers Manag 103:321–337

    Google Scholar 

  87. Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S (2014) Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico. J Clean Prod 79:321–337

    Google Scholar 

  88. Dahal RK, Acharya B, Farooque A (2018) Biochar: a sustainable solution for solid waste management in agro-processing industries. Biofuels.:1–9

  89. Randolph P, Bansode RR, Hassan OA, Rehrah D, Ravella R, Reddy MR, Watts DW, Novak JM, Ahmedna M (2017) Effect of biochars produced from solid organic municipal waste on soil quality parameters. J Environ Manag 192:271–280

    Google Scholar 

  90. Gunarathne V, Ashiq A, Ginige MP, Premarathna SD, de Alwis A, Athapattu B, et al. Municipal Waste Biochar for Energy and Pollution Remediation. In 2018. p. 227–52

  91. Jayawardhana Y, Mayakaduwa S, Kumarathilaka P, Gamage S, Vithanage M (2017) Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environ Geochem Health:1–15

  92. Ashiq A, Adassooriya NM, Sarkar B, Rajapaksha AU, Ok YS, Vithanage M (2019) Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. J Environ Manag 236:428–435

    Google Scholar 

  93. Ashiq A, Sarkar B, Adassooriya N, Walpita J, Rajapaksha AU, Ok YS, Vithanage M (2019) Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media. Chemosphere. 236:124384

    Google Scholar 

  94. Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J (2014) Biochar pyrolytically produced from municipal solid wastes for aqueous as (V) removal: adsorption property and its improvement with KOH activation. Bioresour Technol 169:622–629

    Google Scholar 

  95. Premarathna KSD, Rajapaksha AU, Adassoriya N, Sarkar B, Sirimuthu NMS, Cooray A, Ok YS, Vithanage M (2019) Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. J Environ Manag 238:315–322

    Google Scholar 

  96. Hoslett J, Ghazal H, Ahmad D, Jouhara H (2019) Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Sci Total Environ 673:777–789

    Google Scholar 

  97. Jayawardhana Y, Mayakaduwa SS, Kumarathilaka P, Gamage S, Vithanage M (2019) Municipal solid waste-derived biochar for the removal of benzene from landfill leachate. Environ Geochem Health 41(4):1739–1753

    Google Scholar 

  98. Chen XW, Wong JTF, Ng CWW, Wong MH (2016) Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability. Environ Sci Pollut Res 23(8):7111–7125

    Google Scholar 

  99. Ding Y, Xiong J, Zhou B, Wei J, Qian A, Zhang H, Zhu W, Zhu J (2019) Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. Waste Manag 87:679–690

    Google Scholar 

  100. Renner R (2007) Rethinking biochar. Environ Sci Technol 41(17):5932–5933

    Google Scholar 

  101. Rondon M, Ramirez J, Lehmann J. Charcoal Additions Reduce Net Emissions of Greenhouse Gases to the Atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration. Baltimore; 2005. p. 21–24

  102. Kannan P, Arunachalam P, Prabukumar G, Govindaraj M (2013) Biochar an alternate option for crop residues and solid waste disposal and climate change mitigation. Afr J Agric Res 8(21):2403–2412

    Google Scholar 

  103. Fidel R, Laird D, Parkin T (2019) Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst 3(1):8

    Google Scholar 

  104. Garg A, Bordoloi S, Ni J, Cai W, Maddibiona PG, Mei G, Poulsen TG, Lin P (2019) Influence of biochar addition on gas permeability in unsaturated soil. Géotechnique Lett 9(1):66–71

    Google Scholar 

  105. Bogner JE, Spokas KA, Burton EA (1997) Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions. Environ Sci Technol 31(9):2504–2514

    Google Scholar 

  106. Reddy KR, Grubb DG, Kumar G (2018) Innovative Biogeochemical Soil Cover to Mitigate Landfill Gas Emissions. In: International Conference on Protection and Restoration of the Environment XIV, Thessaloniki, pp 3–6

  107. Ndirangu SM, Liu Y, Xu K, Song S (2019) Risk evaluation of Pyrolyzed biochar from multiple wastes. J Chemother 2019:1–28

    Google Scholar 

  108. Ouda OKM, Raza SA, Al-Waked R, Al-Asad JF, Nizami A-S (2017) Waste-to-energy potential in the Western Province of Saudi Arabia. J King Saud Univ - Eng Sci 29(3):212–220

    Google Scholar 

  109. Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH (2014) Techno-economic analysis and environmental impact assessment of energy recovery from municipal solid waste (MSW) in Brazil. Resour Conserv Recycl 87:8–20

    Google Scholar 

  110. Kammann CI, Schmidt H-P, Messerschmidt N, Linsel S, Steffens D, Müller C et al (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Report 5:11080

    Google Scholar 

  111. Kim J, Yoo G, Kim D, Ding W, Kang H (2017) Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl Soil Ecol 117–118:57–62

    Google Scholar 

  112. Godlewska P, Schmidt HP, Ok YS, Oleszczuk P (2017) Biochar for composting improvement and contaminants reduction. A review. Bioresour Technol. Elsevier Ltd 246:193–202

  113. Wu H, Lai C, Liang J, Dai J (2016) The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review Phyto-remediation in heavy-metal-polluted mining area, production of biochar, emission of aldehydes/ketones from biomass. View projec. Artic Crit Rev Biotechnol 37(6):754–764

    Google Scholar 

  114. Kizito S, Luo H, Lu J, Bah H, Dong R, Wu S (2019) Role of nutrient-enriched biochar as a soil amendment during maize growth: exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability. 11(11):1–22

    Google Scholar 

  115. Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. Italy: European Commission; 2010

  116. Sohi S, Loez-Capel S, Krull E, Bol R (2009) Biochar’s roles in soil and climate change: a review of research needs. CSIRO L Water Sci Rep 05(64)

  117. Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181(1–3):121–126

    Google Scholar 

  118. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629

    Google Scholar 

  119. Ye S, Zeng G, Wu H, Liang J, Zhang C, Dai J, Xiong W, Song B, Wu S, Yu J (2019) The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conserv Recycl 140:278–285

    Google Scholar 

  120. Zhang J, Lü F, Shao L, He P (2014) The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour Technol 168:252–258

    Google Scholar 

  121. Amin M, Narayana M (2015) Comparative Study of Energy Potential of Mango Pit As Biomass With Coconut Shell Ginisyria & Mixture in Laboratory Scale Developed Updraft Gasifier. In: International Research Symposium on Engineering Advancements 2015 (RSEA 2015). , Malabe, pp 299–302

  122. Gañan J, Abdulla AAK, Miranda AB, Turegano J, Correia S, Cuerda EM (2005) Energy production by means of gasification process of residuals sourced in Extremadura (Spain). Renew Energy 30(11):1759–1769

    Google Scholar 

  123. Klein A, Themelis NJ (2003) Energy recovery from municipal solid wastes by gasification. In: Annual north American waste to energy conference, NAWTEC. ASME International, Tampa, pp 241–252

    Google Scholar 

  124. Black JW, Bircher KG, Chisholm KA (1980) Fluidized-bed gasification of solid wastes and biomass: the CIL program. In: Thermal Conversion of Solid Wastes and Biomass. ACS Publications, pp 351–361

  125. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83(1):55–63

    Google Scholar 

  126. Saghir M, Rehan M, Nizami A-S (2018) Recent trends in gasification based waste-to-energy. In: Gasification for Low-grade Feedstock. InTech, pp 97–113

  127. Papurello D, Lanzini A, Tognana L, Silvestri S, Santarelli M (2015) Waste to energy: exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy. 85:145–158

    Google Scholar 

  128. Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5(1):65–75

    Google Scholar 

  129. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Google Scholar 

  130. Pathak AK, Singh MM, Kumar V, Trivedi AK (2012) Phytoremediation of municipal solid waste landfill site: a review. J Chem Chem Sci 2(1):1–92

    Google Scholar 

  131. Favas PJC, Pratas J, Paul MS, Prasad MNV (2019) Remediation of uranium-contaminated sites by phytoremediation and natural attenuation. In: Phytomanagement of Polluted Sites. Elsevier, pp 277–300

  132. Ekta P, Modi NR (2018) A review of phytoremediation. J Pharmacogn Phytochem 7(4):1485–1489

    Google Scholar 

  133. Laghlimi M, Baghdad B, El Hadi H, Bouabdli A (2015) Phytoremediation mechanisms of heavy metal contaminated soils: a review. Open J Ecol 5(08):375–388

    Google Scholar 

  134. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM et al (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133

    Google Scholar 

  135. Srivastava S, Shrivastava M, Suprasanna P, D’souza SF (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37(11):1937–1941

    Google Scholar 

  136. Verma S, Mishra B, Pandit R, Chatterjee A, Jadhav SS, Gaoture PS et al (2015) Treatment of landfill leachate by phytoremediation. Int J Eng Res Gen Sci 3:1234–1237

    Google Scholar 

  137. Zhang X, Hu Y, Liu Y, Chen B (2011) Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). J Environ Sci 23(4):601–606

    Google Scholar 

  138. Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Env Bioenergy 2(3):120–136

    Google Scholar 

  139. Ismail S (2012) Phytoremediation: a green technology. Iran J Plant Physiol 3(1):567–576

    Google Scholar 

  140. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley

  141. Sharma S, Pathak H (2014) Basic techniques of phytoremediation. Int J Sci Eng Res 5(4):584–604

    Google Scholar 

  142. McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Google Scholar 

  143. Salido AL, Hasty KL, Lim J-M, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5(2):89–103

    Google Scholar 

  144. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    Google Scholar 

  145. Wei S, Zhou Q, Koval PV (2006) Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ 369(1–3):441–446

    Google Scholar 

  146. Chen J-C, Wang K-S, Chen H, Lu C-Y, Huang L-C, Li H-C, Peng TH, Chang SH (2010) Phytoremediation of Cr (III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. Bioresour Technol 101(9):3033–3039

    Google Scholar 

  147. Baah B. Phytoremediation of hydrocarbon contaminated soil-a case study at Newmont Ghana Gold Limited–Ahafo Kenyasi. 2011. p. 111

  148. Erdogan R, Zaimoglu Z, Sucu MY, Budak F, Kekec S (2008) Applicability of leachates originating from solid-waste landfills for irrigation in landfill restoration projects. J Environ Biol 29(5):779–784

    Google Scholar 

  149. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15(3):225–230

    Google Scholar 

  150. Parco GF, GTZ AK (2005) Engineered Reed bed treatment system as a low cost sanitation option for the Philippines. In: Hands-on Workshop on Sanitation and Wastewater Management, pp 1–12

    Google Scholar 

  151. Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Google Scholar 

  152. Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63(2):128–135

    Google Scholar 

  153. Yang W, Ding Z, Zhao F, Wang Y, Zhang X, Zhu Z, Yang X (2015) Comparison of manganese tolerance and accumulation among 24 Salix clones in a hydroponic experiment: application for phytoremediation. J Geochem Explor 149:1–7

    Google Scholar 

  154. Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50(13):6632–6643

    Google Scholar 

  155. Lin Z-Q, Terry N (1999) 4 remediation of selenium-polluted soils and waters by Phytovolatilization. Phytoremediation Contam Soil Water 61

  156. Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28(2):367

    MathSciNet  Google Scholar 

  157. Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2(7):151–156

    Google Scholar 

  158. Poschenrieder C, i Coll JB (2003) Phytoremediation: principles and perspectives. Contrib to Sci:333–344

  159. Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12

    Google Scholar 

  160. Wijesekara SSRMDHR, Mayakaduwa SS, Siriwardana AR, de Silva N, Basnayake BFA, Kawamoto K et al (2014) Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environ Earth Sci 72(5):1707–1719

    Google Scholar 

  161. Kwarciak-Kozłowska A, Włodarczyk R, Wystalska K (2019) Biochar compared with activated granular carbon for landfill leachate treatment. In: E3S Web of Conferences. EDP Sciences, p 42

  162. Vithanage M, Wijesekara S, Siriwardana AR, Mayakaduwa SS, Ok YS (2014) Management of municipal solid waste landfill leachate: a global environmental issue. In: Environmental Deterioration and Human Health. Springer, pp 263–288

  163. Erdogan R, Zaimoglu Z (2015) The characteristics of phytoremediation of soil and leachate polluted by landfills. Adv Bioremediation Wastewater Polluted Soil 227

  164. Akinbile CO, Yusoff MS, Zuki AZA (2012) Landfill leachate treatment using sub-surface flow constructed wetland by Cyperus haspan. Waste Manag 32(7):1387–1393

    Google Scholar 

  165. Yalçuk A, Ugurlu A (2020) Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modeling. Int J Phytoremediation 22(2):157–166

    Google Scholar 

  166. Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(1–2):93–117

    Google Scholar 

  167. Madera C, Valencia-Zuluaga V (2009) Landfill leachate treatment: one of the bigger and underestimated problems of the urban water management in developing countries. In: 9th World Wide Workshop for Young Environmental Scientists WWW-YES-Brazil-2009: Urban waters: resource or risks? , Belo Horiz, pp 1–10

  168. Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL (2015) Phytoremediation of landfill leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in constructed wetlands. Int J Phytoremediation 17(1):16–24

    Google Scholar 

  169. Yang WEIC, Bin CT (2001) Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol Sin 7:23

    Google Scholar 

  170. Halim AA, Aziz HA, Johari MAM, Ariffin KS (2010) Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination. 262(1–3):31–35

    Google Scholar 

  171. Kamaruddin MA, Yusoff MS, Aziz HA, Alrozi R (2016) Current status of Pulau Burung sanitary landfill leachate treatment, Penang Malaysia. In: AIP conference proceedings. AIP Publishing LLC, p 30014

  172. Aluko OO, Sridhar MK, Oluwande PA (2003) Characterization of leachates from a municipal solid waste landfill site in Ibadan, Nigeria. J Environ Heal Res 2(1):32–37

    Google Scholar 

  173. Longe EO, Balogun MR (2010) Groundwater quality assessment near a municipal landfill, Lagos, Nigeria. Res J Appl Sci Eng Technol 2(1):39–44

    Google Scholar 

  174. Pant HK, Adjei MB, Scholberg JMS, Chambliss CG, Rechcigl JE (2004) Forage production and phosphorus phytoremediation in manure-impacted soils. Agron J 96(6):1780–1786

    Google Scholar 

  175. Paskuliakova A, Tonry S, Touzet N (2016) Phycoremediation of landfill leachate with chlorophytes: phosphate a limiting factor on ammonia nitrogen removal. Water Res 99:180–187

    Google Scholar 

  176. Glaser B, Lehr V-I (2019) Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep 9(1):1–9

    Google Scholar 

  177. Baun DL, Christensen TH (2004) Speciation of heavy metals in landfill leachate: a review. Waste Manag Res 22(1):3–23

    Google Scholar 

  178. Padmi T, Tanaka M, Aoyama I (2009) Chemical stabilization of medical waste fly ash using chelating agent and phosphates: heavy metals and ecotoxicity evaluation. Waste Manag 29(7):2065–2070

    Google Scholar 

  179. Zeng Z, Li T, Zhao F, He Z, Zhao H, Yang X et al (2013) Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J Zhejiang Univ Sci B 14(12):1152–1161

    Google Scholar 

  180. Daud MK, Ali S, Abbas Z, Zaheer IE, Riaz MA, Malik A et al (2018) Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J Chemother 2018:3951540

    Google Scholar 

  181. Söğüt Z, Zaimoğlu BZ, Erdoğan R, Sucu MY (2005) Phytoremediation of landfill leachate using Pennisetum clandestinum. J Environ Biol 26:13–20

    Google Scholar 

  182. Abbas Z, Arooj F, Ali S, Zaheer IE, Rizwan M, Riaz MA (2019) Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Int J Phytoremediation 21(13):1356–1367

    Google Scholar 

  183. Rosenkranz T Phytoremediation of landfill leachate by irrigation to willow short-rotation coppice. SLU, Dept. of Crop Production Ecology; 2013

  184. Moktar KA, Tajuddin RM (2019) Phytoremediation of heavy metal from leachate using imperata cylindrica. In: MATEC Web of Conferences. EDP Sciences, p 1021

  185. Madera-Parra CA, Peña MR, Peña EJ, Lens PNL (2015) Cr (VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environ Sci Pollut Res 22(17):12804–12815

    Google Scholar 

  186. Jerez Ch JA, Romero RM (2016) Evaluation of Cajanus cajan (pigeon pea) for phytoremediation of landfill leachate containing chromium and lead. Int J Phytoremediation 18(11):1122–1127

    Google Scholar 

  187. Dan A, Fujii D, Soda S, Machimura T, Ike M (2017) Removal of phenol, bisphenol a, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci Total Environ 578:566–576

    Google Scholar 

  188. Omondi EA, Ndiba PK, Njuru PG (2015) Phytoremediation of polychlorobiphenyls (PCB’s) in landfill e-waste leachate with water hyacinth (E. crassipes). Int J Sci Technol Res 4:147–156

    Google Scholar 

  189. Ibezute AC, Tawari-Fufeyin P (2014) Phytodegradation of compost leachate by water hyacinth (Eichhornia Crassipes) from aqueous solutions. Int J Sci Res 3(11):2763–2767

    Google Scholar 

  190. Kadlec RH, Zmarthie LA (2010) Wetland treatment of leachate from a closed landfill. Ecol Eng 36(7):946–957

    Google Scholar 

  191. Bhagwat RV, Boralkar DB, Chavhan RD (2018) Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate. J Ecol Environ 42(1):1–8

    Google Scholar 

  192. Sawaittayothin V, Polprasert C (2007) Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate. Bioresour Technol 98(3):565–570

    Google Scholar 

  193. Chiemchaisri C, Chiemchaisri W, Junsod J, Threedeach S, Wicranarachchi PN (2009) Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresour Technol 100(16):3808–3814

    Google Scholar 

  194. Justin MZ, Zupančič M (2009) Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination. 246(1–3):157–168

    Google Scholar 

  195. Lavrova S, Koumanova B (2010) Influence of recirculation in a lab-scale vertical flow constructed wetland on the treatment efficiency of landfill leachate. Bioresour Technol 101(6):1756–1761

    Google Scholar 

  196. Coppini E, Palli L, Antal A, Del Bubba M, Miceli E, Fani R et al (2019) Design and start-up of a constructed wetland as tertiary treatment for landfill leachates. Water Sci Technol 79(1):145–155

    Google Scholar 

  197. Bulc TG (2006) Long term performance of a constructed wetland for landfill leachate treatment. Ecol Eng 26(4):365–374

    Google Scholar 

  198. Zhou X, Wang X, Zhang H, Wu H (2017) Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland. Bioresour Technol 241:269–275

    Google Scholar 

  199. Lamb DT, Venkatraman K, Bolan N, Ashwath N, Choppala G, Naidu R (2014) Phytocapping: an alternative technology for the sustainable management of landfill sites. Crit Rev Environ Sci Technol 44(6):561–637

    Google Scholar 

  200. Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manag 193:19–31

    Google Scholar 

  201. Pazoki M, Abdoli M, Karbasi A, Mehrdadi N, Yaghmaeian K, Salajegheh P (2012) Removal of nitrogen and phosphorous from municipal landfill leachate through land treatment. World Appl Sci J 20(4):512–519

    Google Scholar 

  202. Joseph S, Wijekoon P, Dilsharan B, Punchihewa N, Athapattu B, Vithanage M (2020) Landfill leachate treatment via anammox system, municipal solid waste biochar-based column and constructed wetland. Environ Res (Under Rev)

  203. Pavlineri N, Skoulikidis NT, Tsihrintzis VA (2017) Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chem Eng J 308:1120–1132

    Google Scholar 

  204. Li L, Li Y, Biswas DK, Nian Y, Jiang G (2008) Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresour Technol 99(6):1656–1663

    Google Scholar 

  205. Hui TS. Leachate treatment by floating plants in constructed wetland. Master’s Thesis, Universiti Teknologi Malaysia, Malaysia. Universiti Teknologi Malaysia; 2005

  206. El-Gendy AS, Biswas N, Bewtra JK (2006) Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system. Water Environ Res 78(9):951–964

    Google Scholar 

  207. Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C (2016) Biochar applications and modern techniques for characterization. Clean Techn Environ Policy 18(5):1457–1473

    Google Scholar 

  208. Schlegelmilch M, Streese J, Biedermann W, Herold T, Stegmann R (2005) Odour control at biowaste composting facilities. Waste Manag 25(9):917–927

    Google Scholar 

  209. Jones DL, Williamson KL, Owen AG (2006) Phytoremediation of landfill leachate. Waste Manag 26(8):825–837

    Google Scholar 

  210. Obarska-Pempkowiak H, Gajewska M, Wojciechowska E (2013) Operational problems of constructed wetland for landfill leachate treatment: case study. J Ecol Eng 14(3):53–58

    Google Scholar 

  211. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Google Scholar 

  212. Nagendran R, Selvam A, Joseph K, Chiemchaisri C (2006) Phytoremediation and rehabilitation of municipal solid waste landfills and dumpsites: a brief review. Waste Manag 26(12):1357–1369

    Google Scholar 

  213. Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 2016:188–206

    Google Scholar 

Download references

Acknowledgments

Authors hereby acknowledge National Research Council Target Oriented Grant 18-021, Sri Lanka and Early Career Women Fellowship from the Organization for Women Scientists of Developing Countries, Italy, through a grant from UNESCO and the International Development Research Centre, Ottawa, Canada. The views expressed herein do not necessarily represent those of UNESCO, IDRC or its Board of Governors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Meththika Vithanage Bandunee Athapattu, Ajith de Alwis and Mahinsasa Narayana; Formal analysis and investigation: Prabuddhi Wijekoon, Chathuranga Wickramasinghe; Writing - original draft preparation: Prabuddhi Wijekoon, Chathuranga Wickramasinghe; Writing - review and editing: Bandunee Athapattu, Ajith de Alwis, Mahinsasa Narayana; Funding acquisition: Meththika Vithanage; Resources: Meththika Vithanage; Supervision: Meththika Vithanage.

Corresponding authors

Correspondence to Mahinsasa Narayana or Meththika Vithanage.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prabuddhi Wijekoon and Chathuranga Wickramasinghe are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijekoon, P., Wickramasinghe, C., Athapattu, B.C.L. et al. Biomass valorization and phytoremediation as integrated Technology for Municipal Solid Waste Management for developing economic context. Biomass Conv. Bioref. 11, 363–382 (2021). https://doi.org/10.1007/s13399-020-00818-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00818-7

Keywords

Navigation