Skip to main content

Advertisement

Log in

Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Rice straw and rice husks occur in large quantities as side streams of the world wide rice production. These side streams can be used as a renewable source of energy via the biochemical as well as the thermochemical conversion route. Exemplarily for samples from various South-East Asian countries, the most important characterizing figures are measured analytically. Then, the two conversion routes—based on a thermochemical as well as on a biochemical conversion—are discussed in detail. Based on such technological solutions as well as the measured data, nine case studies for each conversion system are defined and assessed related to the levelized costs of electricity (LCOEl) and energy (LCOEn). Additionally, the specific substrate demands (SSDs) and specific land demands (SLDs) are calculated indicating the mass and area efficiency of chosen substrates and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. United States Department of Agriculture (ed.): Grain: world markets and trade, Washington, DC. https://apps.fas.usda.gov/psdonline/circulars/grain.pdf (2018). Accessed 15 March 2018

  2. FAO - Food and Agriculture Organization of the United Nations (ed.): FAOSTAT - Data. http://www.fao.org/faostat/en/#home (2018). Accessed 15 March 2018

  3. Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sust Energ Rev 16(5):3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

    Article  Google Scholar 

  4. BP (ed.): BP Statistical Review of World Energy 2017, London. www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf (2017). Accessed 15 March 2018

  5. Sun J, Peng H, Chen J, Wang X, Wei M, Li W, Yang L, Zhang Q, Wang W, Mellouki A (2016) An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J Clean Prod 112:2625–2631. https://doi.org/10.1016/j.jclepro.2015.09.112

    Article  Google Scholar 

  6. Duong PT, Yoshiro H (2015) Current situation and possibilities of rice straw management in Vietnam. University of Tsukuba. http://www.jsrsai.jp/Annual_Meeting/PROG_52/ResumeC/C02-4.pdf. Accessed 15 March 2018

  7. Singh R, Srivastava M, Shukla A (2016) Environmental sustainability of bioethanol production from rice straw in India. A review. Renew Sust Energ Rev 54:202–216. https://doi.org/10.1016/j.rser.2015.10.005

    Article  Google Scholar 

  8. Zhang H, Hu J, Qi Y, Li C, Chen J, Wang X, He J, Wang S, Hao J, Zhang L, Zhang L, Zhang Y, Li R, Wang S, Chai F (2017) Emission characterization, environmental impact, and control measure of PM 2.5 emitted from agricultural crop residue burning in China. J Clean Prod 149:629–635. https://doi.org/10.1016/j.jclepro.2017.02.092

    Article  Google Scholar 

  9. Botta GF, Tolón-becerra A, Lastra-bravo X, Hidalgo R, Rivero D, Agnes D (2015) Alternatives for handling rice (Oryza sativa L.) straw to favor its decomposition in direct sowing systems and their incidence on soil compaction. Geoderma 239-240:213–222. https://doi.org/10.1016/j.geoderma.2014.10.021

    Article  Google Scholar 

  10. Fushimi A, Saitoh K, Hayashi K, Ono K, Fujitani Y, Villalobos AM, Shelton BR, Takami A, Tanabe K, Schauer JJ (2017) Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmos Environ 163:118–127. https://doi.org/10.1016/j.atmosenv.2017.05.037

    Article  Google Scholar 

  11. LU Y, GUO L, Jl C, ZHANG X, HAO X, Yan Q (2006) Hydrogen production by biomass gasification in supercritical water. A parametric study. Int J Hydrog Energy 31(7):822–831. https://doi.org/10.1016/j.ijhydene.2005.08.011

    Article  Google Scholar 

  12. Nassar MM (1998) Thermal analysis kinetics of bagasse and rice straw. Energy Sources 20(9):831–837. https://doi.org/10.1080/00908319808970101

    Article  Google Scholar 

  13. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56(1):1–24. https://doi.org/10.1016/S0168-1656(97)00073-4

    Article  MathSciNet  Google Scholar 

  14. Haykiri-Acma H, Yaman S, Kucukbayrak S (2010) Effect of biomass on temperatures of sintering and initial deformation of lignite ash. Fuel 89(10):3063–3068. https://doi.org/10.1016/j.fuel.2010.06.003

    Article  Google Scholar 

  15. Lin KS, Wang H, Lin C-J, Juch C-I (1998) A process development for gasification of rice husk. Fuel Process Technol 55(3):185–192. https://doi.org/10.1016/S0378-3820(98)00049-6

    Article  Google Scholar 

  16. Reynolds W, Kirsch C, Smirnova I (2015) Thermal-enzymatic hydrolysis of wheat straw in a single high pressure fixed bed. CIT 87(10):1305–1312. https://doi.org/10.1002/cite.201400192

    Google Scholar 

  17. Hartmann H (2016) Brennstoffzusammensetzung und -eigenschaften. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 3rd edn. Springer Vieweg, Berlin, pp 579–645

    Google Scholar 

  18. Netz H (1982) Verbrennung und Gasgewinnung bei Festbrennstoffen. Resch, Gräfelfing/München

    Google Scholar 

  19. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544(1–2):191–198. https://doi.org/10.1016/j.aca.2005.01.041

    Article  Google Scholar 

  20. Phyllis2 - Energy research Centre of the Netherlands (ed.): Database for biomass and waste. https://www.ecn.nl/phyllis2. Accessed 15 March 2018

  21. Bakar RA, Yahya R, Gan SN (2016) Production of high purity amorphous silica from rice husk. Procedia Chem 19:189–195. https://doi.org/10.1016/j.proche.2016.03.092

    Article  Google Scholar 

  22. Ramamurthi PV, Fernandes MC, Nielsen PS, Nunes CP (2016) Utilisation of rice residues for decentralised electricity generation in Ghana. An economic analysis. Energy 111:620–629. https://doi.org/10.1016/j.energy.2016.05.116

    Article  Google Scholar 

  23. Miles TR, Baxter L, Bryers RW, Jenkins M, Oden LL (1995) Alkali deposits found in biomass power plants. A preliminary investigation of their extend and nature. NREL/TP-433-8142. https://www.nrel.gov/docs/legosti/fy96/8142v1.pdf. Accessed 15 March 2018

  24. Osman EA, Goss JR (1983) Paper No. 83-3549: Ash chemical composition, deformation and fusion temperatures for wood and agricultural residues. In: American Society of Agricultural Engineers (ed) Proceedings of Winter meeting. Winter Meeting, vol 13. - 16. American Society of Agricultural Engineers, Chicago, pp 1–16

    Google Scholar 

  25. Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87(5):383–408. https://doi.org/10.1016/j.fuproc.2005.08.015

    Article  Google Scholar 

  26. de Oliveira EH, Silva VA, Oliveira RR, Teran AS, Castillo AVA, Harada J, Diaz FRV, Moura EAB (2014) Investigation on mechanical and morphological behaviours of copolyester/starch blend reinforced with rice husk ash. In: Carpenter JS, Bai C, Hwang J-Y, Ikhmayies S, Li B, Monteiro SN, Peng Z, Zhang M (eds) Characterization of minerals, metals, and materials 2014. John Wiley & Sons, Inc, Hoboken, pp 491–498

    Chapter  Google Scholar 

  27. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. https://doi.org/10.1021/ie50507a033

    Article  Google Scholar 

  28. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. A review. Int J Mol Sci 9(9):1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  29. VDI-Gesellschaft Energie und Umwelt (ed.) (2016): Fermentation of organic materials—characterization of the substrate, sampling, collection of material data, fermentation tests 13.030.30, 4630. Beuth Verlag GmbH, Düsseldorf

  30. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569. https://doi.org/10.1016/j.biortech.2013.09.063

    Article  Google Scholar 

  31. Kalra MS, Panwar JS (1986) Anaerobic digestion of rice crop residues. Agric Waste 17(4):263–269. https://doi.org/10.1016/0141-4607(86)90134-4

    Article  Google Scholar 

  32. Gu Y, Zhang Y, Zhou X (2015) Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour Technol 196:116–122. https://doi.org/10.1016/j.biortech.2015.07.004

    Article  Google Scholar 

  33. Ye J, Li D, Sun Y, Wang G, Yuan Z, Zhen F, Wang Y (2013) Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manag 33(12):2653–2658. https://doi.org/10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  34. Contreras LM, Schelle H, Sebrango CR, Pereda I (2012) Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Water Sci Technol J Int Assoc Water Pollut Res 65(6):1142–1149. https://doi.org/10.2166/wst.2012.951

    Article  Google Scholar 

  35. Wendland M, Lichti F (2012) Biogasgärreste. Einsatz von Gärresten aus der Biogasproduktion als Düngemittel. Bayerische Landesanstalt für Landwirtschaft, Freising. https://www.lfl.bayern.de/mam/cms07/ipz/dateien/leitfaden_2012-03_biogasforum.pdf. Accessed 15 March 2018

  36. Shafiea SM, Mahliab TMI, Masjukia HH, Chonga Wt (2013) Logistic cost analysis of rice straw to optimize power plant in Malaysia. J Technol Innov Renew Energy 2:67–75. https://doi.org/10.6000/1929-6002.2013.02.01.9

  37. Delivand MK, Barz M, Gheewala SH (2011) Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy 36(3):1435–1441. https://doi.org/10.1016/j.energy.2011.01.026

    Article  Google Scholar 

  38. Vijay Ramamurthi P, Cristina Fernandes M, Sieverts Nielsen P, Pedro Nunes C (2014) Logistics cost analysis of rice residues for second generation bioenergy production in Ghana. Bioresour Technol 173:429–438. https://doi.org/10.1016/j.biortech.2014.09.102

    Article  Google Scholar 

  39. IRENA - International Renewable Energy Agency (ed.): Renewable energy technologies: cost analysis series. Hydropower., United Arab Emirates. https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-hydropower.pdf (2012). Accessed 15 March 2018

  40. Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (ed.): Leitfaden Biogas. Von der Gewinnung zur Nutzung, 7th edn. Bioenergie. Druckerei Weidner, Rostock (2016)

  41. Delivand MK, Barz M, Gheewala SH, Sajjakulnukit B (2011) Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand. Appl Energy 88(11):3651–3658. https://doi.org/10.1016/j.apenergy.2011.04.001

    Article  Google Scholar 

  42. Shafie SM, Masjuki HH, Mahlia T (2014) Rice straw supply chain for electricity generation in Malaysia. Economical and environmental assessment. Appl Energy 135:299–308. https://doi.org/10.1016/j.apenergy.2014.08.101

    Article  Google Scholar 

  43. Global Rice Science Partnership (GRiSP) (ed.): Rice almanac. International Rice Research Institute, Los Baños (Philippines). http://ricepedia.org/rice-as-a-crop/how-is-rice-grown (2013). Accessed 15 March 2018

  44. International Rice Research Institute (ed.): Rice Knowledge Bank—harvesting. Harvesting systems. http://www.knowledgebank.irri.org/step-by-step-production/postharvest/harvesting#harvesting-systems (2017). Accessed 15 March 2018

  45. Hegazy Rashad, Sandro Joseph M (2016): Report. Rice Straw Collection. https://www.researchgate.net/publication/301770258_Report_Rice_Straw_Collection. Accessed 15 March 2018

  46. van Nguyen H, Nguyen CD, van Tran T, Hau HD, Nguyen NT, Gummert M (2016) Energy efficiency, greenhouse gas emissions, and cost of rice straw collection in the Mekong river delta of Vietnam. Field Crop Res 198:16–22. https://doi.org/10.1016/j.fcr.2016.08.024

    Article  Google Scholar 

  47. Expert talk: adjustment of specific investment costs (85% of reference value) (2018)

  48. Köttner M (2016) Sustainable bioenergy production—trends and examples,. http://www.handelskammer.dk/fileadmin/ahk_daenemark/Veranstaltungen/Bioenergi/15-20160314_EE_AHK-GR_Daenemark_Praesentation_Koettner_2016.pdf. Accessed 15 March 2018

  49. Germany Trade and Invest - Gesellschaft für Außenwirtschaft und Standortmarketing mbH (ed.): Lohn- und Lohnnebenkosten - Indien. https://www.gtai.de/GTAI/Navigation/DE/Trade/Maerkte/Geschaeftspraxis/lohn-und-lohnnebenkosten,t=lohn-und-lohnnebenkosten--indien,did=1683508.html (2017). Accessed 15 March 2018

  50. Reinhold G (2005) Masse- und Trockensubstanzbilanz in landwirtschaftlichen Biogasanlagen. Thüringer Landesanstalt für Landwirtschaft. http://www.tll.de/ainfo/pdf/biog1205.pdf. Accessed 15 March 2018

  51. Rolink D (2013) Gärreste vermarkten: Separieren reicht nicht. topagrar, 7. https://www.topagrar.com/archiv/Gaerreste-vermarkten-Separieren-reicht-nicht-1186213.html. Accessed 15 March 2018

  52. Awengen W, Alps-Lammers H (2014): Maispreis 2014 - So kalkulieren Sie richtig. http://www.lwk-niedersachsen.de/index.cfm/portal/6/nav/360/article/17878.html. Accessed 15 March 2018

  53. Kröger R, Reckermann M, Schaper C, Theuvsen L (2016) Gärreste als Gartendünger vermarkten? Berichte über Landwirtschaft 94:1. https://doi.org/10.12767/buel.v94i1.99.g244

    Google Scholar 

  54. Hartl G, Piepel H Laurenz L (2013) Nährstoffausgleich in und zwischen den Regionen – Strategien für NRW. Transport und Export von Gülle – Ökonomische Konsequenzen für den Betrieb. Landwirtschaftskammer Nordrhein-Westfalen. https://www.landwirtschaftskammer.de/landwirtschaft/download/herbsttagung/2013-12-hartl.pdf. Accessed 15 March 2018

  55. Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement. Assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22(8):1675–1683. https://doi.org/10.1016/j.conbuildmat.2007.06.011

    Article  Google Scholar 

  56. He L, Huang H, Zhang Z, Lei Z, Lin B-L (2017) Energy recovery from rice straw through hydrothermal pretreatment and subsequent biomethane production. Energy Fuel 31(10):10850–10857. https://doi.org/10.1021/acs.energyfuels.7b01392

    Article  Google Scholar 

  57. Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass. A potential and promising method for enhanced methane production. Appl Energy 94:129–140. https://doi.org/10.1016/j.apenergy.2012.01.027

    Article  Google Scholar 

  58. Dehghani M, Karimi K, Sadeghi M (2015) Pretreatment of rice straw for the improvement of biogas production. Energy Fuel 29(6):3770–3775. https://doi.org/10.1021/acs.energyfuels.5b00718

    Article  Google Scholar 

  59. Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sust Energ Rev 53:1468–1485. https://doi.org/10.1016/j.rser.2015.09.051

    Article  Google Scholar 

  60. Kalapathy U (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73(3):257–262. https://doi.org/10.1016/S0960-8524(99)00127-3

    Article  Google Scholar 

  61. Nandiyanto ABD, Permatasari N, Sucahya TN, Abdullah AG, Hasanah L (2017) Synthesis of potassium silicate nanoparticles from rice straw ash using a flame-assisted spray-pyrolysis method. IOP Conf Ser: Mater Sci Eng 180:12133. https://doi.org/10.1088/1757-899X/180/1/012133

    Article  Google Scholar 

  62. Roselló J, Soriano L, Santamarina MP, Akasaki JL, Monzó J, Payá J (2017) Rice straw ash. A potential pozzolanic supplementary material for cementing systems. Ind Crop Prod 103:39–50. https://doi.org/10.1016/j.indcrop.2017.03.030

    Article  Google Scholar 

  63. Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185(1):31–35. https://doi.org/10.1016/j.powtec.2007.09.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Baetge.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baetge, S., Kaltschmitt, M. Rice straw and rice husks as energy sources—comparison of direct combustion and biogas production. Biomass Conv. Bioref. 8, 719–737 (2018). https://doi.org/10.1007/s13399-018-0321-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0321-y

Keywords

Navigation