Skip to main content
Log in

Where to go for the Development of High-Performance H2 Storage Materials at Ambient Conditions?

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

A Correction to this article was published on 29 November 2022

This article has been updated

Abstract

Hydrogen is expected to overcome energy resource depletion because it is the most abundant element in the universe and because an ideal hydrogen energy cycle has the potential to exploit energy infinitely. Conventionally, hydrogen storage utilizes compression under high pressure (350–700 bar) into a tank and liquefaction in the cryotemperature regime (20 K). To mitigate the impractical operating conditions researchers have conducted adsorption-dependent research to increase the specific surface area (SSA) in physisorption and to decrease the H2 binding energy in chemisorption. Nevertheless, these strategies are still unlikely to reach the required the U.S. Department of Energy (DOE) targets. To this end, researchers have tried to find hydrogen storage material to fit the H2 binding energy between the physisorption region and chemisorption region. Previous governing parameters, the SSA, and the H2 binding energy show no correlation to gravimetric H2 storage capacity (GHSC). In addition, no correlation between the H2 densification index (HDI) and the H2 binding energy is found as well, which means the latter cannot describe the H2-adsorbent interaction thoroughly. The several notable findings presented here suggest that the development of high-performance H2 storage materials can be realized through the optimal modulation of an underlying parameter that dominates the H2-adsorbent interaction. This paper highlights the necessity of research on what the underlying parameter that dominates the H2-adsorbent interaction is and on how it affects GHSC to develop H2 storage materials that meet the DOE targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2012 ACS Publications), B Nanoscopic ligands btei (PCN-61), ntei (PCN-66), and ttei (PCN-610) (Reproduced with permission. Copyright 2010, Wiley–VCH [20])

Fig. 4
Fig. 5

Copyright 2007 ACS publications

Fig. 6
Fig. 7

Copyright 2011, ACS publications [78]. B Effect of the pore size on the GHSC per unit SSA. The general trend indicates that small pores are more efficient than large pores for a given SSA (Reprinted with permission from [83], Copyright 2005, American Chemical Society). C GHSC outcomes at 300 K and 100 bar for various types of porous carbon and MOFs plotted as a function of the SSA. The figure is reproduced with permission. Copyright 2012, ACS publications [19]

Fig. 8

Similar content being viewed by others

Change history

References

  1. Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L., Williams, S.E.: Extinction risk from climate change. Nature 6970, 145–148 (2004)

    Article  Google Scholar 

  2. Yang, S.J., Jung, H., Kim, T., Park, C.R.: Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Progr. Nat. Sci.: Mater. Int. 6, 631–638 (2012)

    Article  Google Scholar 

  3. von Helmolt, R., Eberle, U.: Fuel cell vehicles: status 2007. J. Power Sour. 2, 833–843 (2007)

    Article  Google Scholar 

  4. Zheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., Yang, J.: Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 1, 1048–1057 (2012)

    Article  Google Scholar 

  5. Aceves, S.M., Espinosa-Loza, F., Ledesma-Orozco, E., Ross, T.O., Weisberg, A.H., Brunner, T.C., Kircher, O.: High-density automotive hydrogen storage with cryogenic capable pressure vessels. Int. J. Hydrogen Energy 3, 1219–1226 (2010)

    Article  Google Scholar 

  6. Bhatia, S.K., Myers, A.L.: Optimum conditions for adsorptive storage. Langmuir 4, 1688–1700 (2006)

    Article  Google Scholar 

  7. Lochan, R.C., Head-Gordon, M.: Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys. Chem. Chem. Phys. 12, 1357–1370 (2006)

    Article  Google Scholar 

  8. Zhao, Y., Kim, Y.H., Dillon, A.C., Heben, M.J., Zhang, S.B.: Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett. 94(15), 155504 (2005)

    Article  Google Scholar 

  9. Hoang, T.K.A., Antonelli, D.M.: Exploiting the kubas interaction in the design of hydrogen storage materials. Adv. Mater. 18, 1787–1800 (2009)

    Article  Google Scholar 

  10. Bae, Y.S., Snurr, R.Q.: Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Microporous Mesoporous Mater. 1–2, 300–303 (2010)

    Article  Google Scholar 

  11. Ding, F., Yakobson, B.I.: Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys. 2, 142–150 (2011)

    Article  Google Scholar 

  12. Lim, K.L., Kazemian, H., Yaakob, Z., Daud, W.R.W.: Solid-state materials and methods for hydrogen storage: a critical review. Chem. Eng. Technol. 2, 213–226 (2010)

    Article  Google Scholar 

  13. Jena, P.: Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett. 3, 206–211 (2011)

    Article  Google Scholar 

  14. Sakintuna, B., Lamari-Darkrim, F., Hirscher, M.: Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 9, 1121–1140 (2007)

    Article  Google Scholar 

  15. Orimo, S.I., Nakamori, Y., Eliseo, J.R., Züttel, A., Jensen, C.M.: Complex hydrides for hydrogen storage. Chem. Rev. 10, 4111–4132 (2007)

    Article  Google Scholar 

  16. Bourane, A., Elanany, M., Pham, T.V., Katikaneni, S.P.: An overview of organic liquid phase hydrogen carriers. Int. J. Hydrogen Energy 48, 23075–23091 (2016)

    Article  Google Scholar 

  17. Züttel, A.: Materials for hydrogen storage. Mater. Today 9, 24–33 (2003)

    Article  Google Scholar 

  18. Nishihara, H., Hou, P.X., Li, L.X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., Kyotani, T.: High-pressure hydrogen storage in zeolite-templated carbon. J. Phys. Chem. C 8, 3189–3196 (2009)

    Article  Google Scholar 

  19. Yang, S.J., Kim, T., Im, J.H., Kim, Y.S., Lee, K., Jung, H., Park, C.R.: MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem. Mater. 3, 464–470 (2012)

    Article  Google Scholar 

  20. Yuan, D., Zhao, D., Sun, D., Zhou, H.C.: An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angewandte Chemie - International Edition. 31, 5357–5361 (2010)

    Article  Google Scholar 

  21. Jordá-Beneyto, M., Suárez-García, F., Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A.: Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 2, 293–303 (2007)

    Article  Google Scholar 

  22. Grochala, W., Edwards, P.P.: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 3, 1283–1315 (2004)

    Article  Google Scholar 

  23. Santos, D.M.F., Sequeira, C.A.C.: On the electrosynthesis of sodium borohydride. Int. J. Hydrogen Energy 18, 9851–9861 (2010)

    Article  Google Scholar 

  24. Chen, P., Xiong, Z., Luo, J., Lin, J., Lee Tan, K.: Interaction of hydrogen with metal nitrides and imides. Nature. 6913, 302–304 (2002)

    Article  Google Scholar 

  25. Stephens, F.H., Pons, V., Baker, R.T.: Ammonia-borane: the hydrogen source par excellence? Dalton Trans. 25, 2613–2626 (2007)

    Article  Google Scholar 

  26. Biniwale, R.B., Rayalu, S., Devotta, S., Ichikawa, M.: Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int. J. Hydrogen Energy 1, 360–365 (2008)

    Article  Google Scholar 

  27. Zhu, Q.L., Xu, Q.: Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2, 478–512 (2015)

    Article  Google Scholar 

  28. Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., Bessarabov, D.: The prospect of hydrogen storage using liquid organic hydrogen carriers. Energy Fuels 4, 2778–2796 (2019)

    Article  Google Scholar 

  29. Maurer, R., Renken, A.: Dehydrogenation of methanol to anhydrous formaldehyde in a microstuctured reactor system. Chem. Eng. Res. Des. 7, 730–734 (2003)

    Article  Google Scholar 

  30. Reilly, J.J., Wiswall, R.H.: Formation and properties of iron titanium hydride. Inorg. Chem. 1, 218–222 (1974)

    Article  Google Scholar 

  31. Sandrock, G.: Panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293, 877–888 (1999)

    Article  Google Scholar 

  32. Sujan, G.K., Pan, Z., Li, H., Liang, D., Alam, N.: An overview on TiFe intermetallic for solid-state hydrogen storage: microstructure, hydrogenation and fabrication processes. Crit. Rev. Solid State Mater. Sci. 5, 410–427 (2020)

    Article  Google Scholar 

  33. Dematteis, E.M., Dreistadt, D.M., Capurso, G., Jepsen, J., Cuevas, F., Latroche, M.: Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. J. Alloys Compd. 874, 159925 (2021)

    Article  CAS  Google Scholar 

  34. Rusman, N.A.A., Dahari, M.: A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 28, 12108–12126 (2016)

    Article  Google Scholar 

  35. Pedziwiatr, A.T., Craig, R.S., Wallace, W.E., Pourarian, F.: Calorimetric enthalpies of formation and decomposition of hydrides of ZrMn2, ZrCr2, and related systems. J. Solid State Chem. 3, 336–341 (1983)

    Article  Google Scholar 

  36. Liu, B.H., Kim, D.M., Lee, K.Y., Lee, J.Y.: Hydrogen storage properties of TiMn2-based alloys. J. Alloy. Compd. 1–2, 214–218 (1996)

    Article  Google Scholar 

  37. Pickering, L., Li, J., Reed, D., Bevan, A.I., Book, D.: Ti–V–Mn based metal hydrides for hydrogen storage. J. Alloys Compd. 580, S233–S237 (2013)

    Article  CAS  Google Scholar 

  38. Jung, J., Shin, B.S., Kang, J.W., Han, W.S.: Catalytic hydrogenation and dehydrogenation reactions of n-alkyl-bis(Carbazole)-based hydrogen storage materials. Catalysts 1, 1–10 (2021)

    Google Scholar 

  39. Crabtree, R.H.: Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134–138 (2008)

    Article  CAS  Google Scholar 

  40. Cui, Y., Kwok, S., Bucholtz, A., Davis, B., Whitney, R.A., Jessop, P.G.: The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage. New J. Chem. 6, 1027–1037 (2008)

    Article  Google Scholar 

  41. Emel’Yanenko, V.N., Varfolomeev, M.A., Verevkin, S.P., Stark, K., Müller, K., Müller, M., Bösmann, A., Wasserscheid, P., Arlt, W.: Hydrogen storage: thermochemical studies of N-Alkylcarbazoles and their derivatives as a potential liquid organic hydrogen carriers. J. Phys. Chem. C 47, 26381–26389 (2015)

    Article  Google Scholar 

  42. Rao, P.C., Yoon, M.: Potential liquid-organic hydrogen carrier (Lohc) systems: a review on recent progress. Energies 13(22), 6040 (2020)

    Article  CAS  Google Scholar 

  43. Liang, G., Huot, J., Boily, S., Van Neste, A., Schulz, R.: Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloy. Compd. 1–2, 247–252 (1999)

    Article  Google Scholar 

  44. Wagemans, R.W.P., Van Lenthe, J.H., De Jongh, P.E., Van Dillen, A.J., De Jong, K.P.: Hydrogen storage in magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 47, 16675–16680 (2005)

    Article  Google Scholar 

  45. Li, W., Li, C., Ma, H., Chen, J.: Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J. Am. Chem. Soc. 21, 6710–6711 (2007)

    Article  Google Scholar 

  46. Zhang, X., Liu, Y., Ren, Z., Zhang, X., Hu, J., Huang, Z., Lu, Y., Gao, M., Pan, H.: Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 4, 2302–2313 (2021)

    Article  Google Scholar 

  47. Yang, S.J., Cho, J.H., Oh, G.H., Nahm, K.S., Park, C.R.: Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon 6, 1585–1591 (2009)

    Article  Google Scholar 

  48. Kang, K.Y., Lee, B.I., Lee, J.S.: Hydrogen adsorption on nitrogen-doped carbon xerogels. Carbon 4, 1171–1180 (2009)

    Article  Google Scholar 

  49. Wu, S., Fan, K., Wu, M., Yin, G.: Effect of nitrogen doping and external electric field on the adsorption of hydrogen on graphene. Eur. Phys. J. Appl. Phys. 75(1), 10402 (2016)

    Article  Google Scholar 

  50. Xia, Y., Walker, G.S., Grant, D.M., Mokaya, R.: Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J. Am. Chem. Soc. 45, 16493–16499 (2009)

    Article  Google Scholar 

  51. Wang, L., Yang, R.T.: Hydrogen storage properties of N-doped microporous carbon. J. Phys. Chem. C 52, 21883–21888 (2009)

    Article  Google Scholar 

  52. Chung, T.C.M., Jeong, Y., Chen, Q., Kleinhammes, A., Wu, Y.: Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption. J. Am. Chem. Soc. 21, 6668–6669 (2008)

    Article  Google Scholar 

  53. Jeong, Y., Mike Chung, T.C.: The synthesis and characterization of a super-activated carbon containing substitutional boron (BCx) and its applications in hydrogen storage. Carbon. 9, 2526–2537 (2010)

    Article  Google Scholar 

  54. Sathishkumar, N., Wu, S.Y., Chen, H.T.: Boron- and nitrogen-doped penta-graphene as a promising material for hydrogen storage: a computational study. Int. J. Energy Res. 9, 4867–4878 (2019)

    Article  Google Scholar 

  55. Hu, W., Zhang, W., Zheng, M., Xiao, Y., Dong, H., Liang, Y., Hu, H., Liu, Y.: Sodium alginate assisted preparation of oxygen-doped microporous carbons with enhanced electrochemical energy storage and hydrogen uptake. Int. J. Hydrogen Energy 1, 896–905 (2021)

    Article  Google Scholar 

  56. Tellez-Juárez, M.C., Fierro, V., Zhao, W., Fernández-Huerta, N., Izquierdo, M.T., Reguera, E., Celzard, A.: Hydrogen storage in activated carbons produced from coals of different ranks: effect of oxygen content. Int. J. Hydrogen Energy 10, 4996–5002 (2014)

    Article  Google Scholar 

  57. Georgakis, M., Stavropoulos, G., Sakellaropoulos, G.P.: Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups. Int. J. Hydrogen Energy 12, 1999–2004 (2007)

    Article  Google Scholar 

  58. Blankenship, L.S., Balahmar, N., Mokaya, R.: Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 8(1), 1–12 (2017)

    Article  CAS  Google Scholar 

  59. Jiang, J., Gao, Q., Zheng, Z., Xia, K., Hu, J.: Enhanced room temperature hydrogen storage capacity of hollow nitrogen-containing carbon spheres. Int. J. Hydrogen Energy 1, 210–216 (2010)

    Article  Google Scholar 

  60. Jhi, S.H., Kwon, Y.K.: Hydrogen adsorption on boron nitride nanotubes: a path to room-temperature hydrogen storage. Phys. Rev. B 69(24), 245407 (2004)

    Article  Google Scholar 

  61. Mpourmpakis, G., Froudakis, G.E.: Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage?: An ab initio theoretical study. Catal. Today 120(3–4), 341–345 (2007)

    Article  CAS  Google Scholar 

  62. Ma, R., Bando, Y., Zhu, H., Sato, T., Xu, C., Wu, D.: Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 26, 7672–7673 (2002)

    Article  Google Scholar 

  63. Reddy, A.L.M., Tanur, A.E., Walker, G.C.: Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. Int. J. Hydrogen Energy 35(9), 4138–4143 (2010)

    Article  CAS  Google Scholar 

  64. Li, J., Lin, J., Xu, X., Zhang, X., Xue, Y., Mi, J., Mo, Z., Fan, Y., Hu, L., Yang, X., Zhang, J., Meng, F., Yuan, S., Tang, C.: Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology 24(15), 155603 (2013)

    Article  Google Scholar 

  65. Lian, G., Zhang, X., Zhang, S., Liu, D., Cui, D., Wang, Q.: Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ. Sci. 5, 7072–7080 (2012)

    Article  CAS  Google Scholar 

  66. Stephan, D.W., Erker, G.: Frustrated lewis pairs: metal-free hydrogen activation and more. Angewandte Chemie – Int. Ed. 1, 46–76 (2010)

    Article  Google Scholar 

  67. Mao, H., Chen, Z., Cheng, L., Wang, K.: The activity and reversibility of intramolecular B/N Frustrated Lewis Pairs in the hydrogenation. Int. J. Hydrogen Energy 1, 110–118 (2021)

    Article  Google Scholar 

  68. Heshmat, M., Ensing, B.: Optimizing the energetics of FLP-type H2Activation by modulating the electronic and structural properties of the Lewis acids: a DFT study. J. Phys. Chem. A 32, 6399–6410 (2020)

    Article  Google Scholar 

  69. Ma, G., Song, G., Li, Z.H.: Designing metal-free frustrated Lewis pairs catalyst for the efficient dehydrogenation of ammonia borane. Chem. Eur. J. 50, 13238–13245 (2018)

    Article  Google Scholar 

  70. Stephan, D.W.: The broadening reach of frustrated Lewis pair chemistry. Science 354(6317), aaf7229 (2016)

    Article  Google Scholar 

  71. Welch, G.C., San Juan, R.R., Masuda, J.D., Stephan, D.W.: Reversible, metal-free hydrogen activation. Science. 5802, 1124–1126 (2006)

    Article  Google Scholar 

  72. Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.W.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 2, 782–835 (2012)

    Article  Google Scholar 

  73. Dinča, M., Dailly, A., Liu, Y., Brown, C.M., Neumann, D.A., Long, J.R.: Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 51, 16876–16883 (2006)

    Article  Google Scholar 

  74. Latroche, M., Surblé, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P.L., Lee, J.H., Chang, J.S., Sung, H.J., Férey, G.: Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angewandte Chemie – Int. Ed. 48, 8227–8231 (2006)

    Article  Google Scholar 

  75. Kim, T.K., Suh, M.P.: Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. Chem. Commun. 14, 4258–4260 (2011)

    Article  Google Scholar 

  76. Jaramillo, D.E., Jiang, H.Z.H., Evans, H.A., Chakraborty, R., Furukawa, H., Brown, C.M., Head-Gordon, M., Long, J.R.: Ambient-temperature hydrogen storage via vanadium(II)-dihydrogen complexation in a metal-organic framework. J. Am. Chem. Soc. 16, 6248–6256 (2021)

    Article  Google Scholar 

  77. Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 6861, 353–358 (2001)

    Article  Google Scholar 

  78. Gallego, N.C., He, L., Saha, D., Contescu, C.I., Melnichenko, Y.B.: Hydrogen confinement in carbon nanopores: extreme densification at ambient temperature. J. Am. Chem. Soc. 35, 13794–13797 (2011)

    Article  Google Scholar 

  79. Kowalczyk, P., Hołyst, R., Terzyk, A.P., Gauden, P.A.: State of hydrogen in idealized carbon slitlike nanopores at 77 K. Langmuir 5, 1970–1972 (2006)

    Article  Google Scholar 

  80. Masika, E., Mokaya, R.: Hydrogen storage in high surface area carbons with identical surface areas but different pore sizes: direct demonstration of the effects of pore size. J. Phys. Chem. C 49, 25734–25740 (2012)

    Article  Google Scholar 

  81. Patchkovskii, S., Tse, J.S., Yurchenko, S.N., Zhechkov, L., Heine, T., Seifert, G.: Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U.S.A. 30, 10439–10444 (2005)

    Article  Google Scholar 

  82. Liu, S., Liu, J., Liu, X., Shang, J., Xu, L., Yu, R., Shui, J.: Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat. Nanotechnol. 3, 331–336 (2021)

    Article  Google Scholar 

  83. Gogotsi, Y., Dash, R.K., Yushin, G., Yildirim, T., Laudisio, G., Fischer, J.E.: Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J. Am. Chem. Soc. 46, 16006–16007 (2005)

    Article  Google Scholar 

  84. Cabria, I., López, M.J., Alonso, J.A.: The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon 13, 2649–2658 (2007)

    Article  Google Scholar 

  85. Yang, S.J., Im, J.H., Nishihara, H., Jung, H., Lee, K., Kyotani, T., Park, C.R.: General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents. J. Phys. Chem. C 19, 10529–10540 (2012)

    Article  Google Scholar 

  86. Kim, B.H., Hong, W.G., Yu, H.Y., Han, Y.K., Lee, S.M., Chang, S.J., Moon, H.R., Jun, Y., Kim, H.J.: Thermally modulated multilayered graphene oxide for hydrogen storage. Phys. Chem. Chem. Phys. 4, 1480–1484 (2012)

    Article  Google Scholar 

  87. Chung, C.H., Ihm, J., Lee, H.: Recent progress on Kubas-type hydrogen-storage nanomaterials: from theories to experiments. J. Korean Phys. Soc. 11, 1649–1655 (2015)

    Article  Google Scholar 

  88. Skipper, C.V.J., Hamaed, A., Antonelli, D.M., Kaltsoyannis, N.: The Kubas interaction in M(ii) (M = Ti, V, Cr) hydrazine-based hydrogen storage materials: A DFT study. Dalton Trans. 28, 8515–8523 (2012)

    Article  Google Scholar 

  89. Skipper, C.V.J., Hamaed, A., Antonelli, D.M., Kaltsoyannis, N.: Computational study of silica-supported transition metal fragments for Kubas-type hydrogen storage. J. Am. Chem. Soc. 48, 17296–17305 (2010)

    Article  Google Scholar 

  90. Hoang, T.K.A., Hamaed, A., Moula, G., Aroca, R., Trudeau, M., Antonelli, D.M.: Kubas-type hydrogen storage in V(III) polymers using tri- and tetradentate bridging ligands. J. Am. Chem. Soc. 13, 4955–4964 (2011)

    Article  Google Scholar 

  91. Hamaed, A., Hoang, T.K.A., Moula, G., Aroca, R., Trudeau, M.L., Antonelli, D.M.: Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage. J. Am. Chem. Soc. 39, 15434–15443 (2011)

    Article  Google Scholar 

  92. Hoang, T.K.A., Morris, L., Rawson, J.M., Trudeau, M.L., Antonelli, D.M.: Multivalent manganese hydrazide gels for kubas-type hydrogen storage. Chem. Mater. 9, 1629–1638 (2012)

    Article  Google Scholar 

  93. Kim, Y.H., Zhao, Y., Williamson, A., Heben, M.J., Zhang, S.B.: Nondissociative adsorption of H 2 molecules in light-element-doped fullerenes. Phys. Rev. Lett. 96(1), 016102 (2006)

    Article  Google Scholar 

  94. Hamaed, A., Trudeau, M., Antonelli, D.M.: H2 storage materials (22KJ/mol) using organometallic Ti fragments as σ-H2 binding sites. J. Am. Chem. Soc. 22, 6992–6999 (2008)

    Article  Google Scholar 

  95. Morris, L., Trudeau, M.L., Reed, D., Book, D., Antonelli, D.M.: High-pressure raman and calorimetry studies of vanadium(III) alkyl hydrides for kubas-type hydrogen storage. ChemPhysChem 6, 822–828 (2016)

    Article  Google Scholar 

  96. Park, N., Choi, K., Hwang, J., Kim, D.W., Kim, D.O., Ihm, J.: Progress on first-principles-based materials design for hydrogen storage. Proc. Natl. Acad. Sci. U.S.A. 49, 19893–19899 (2012)

    Article  Google Scholar 

  97. Khoobiar, S.: Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles. J. Phys. Chem. 2, 411–412 (1964)

    Article  Google Scholar 

  98. Karim, W., Spreafico, C., Kleibert, A., Gobrecht, J., Vandevondele, J., Ekinci, Y., Van Bokhoven, J.A.: Catalyst support effects on hydrogen spillover. Nature 7635, 68–71 (2017)

    Article  Google Scholar 

  99. Li, Y., Yang, R.T.: Gas adsorption and storage in metal-organic framework MOF-177. Langmuir 26, 12937–12944 (2007)

    Article  Google Scholar 

  100. Li, Y., Yang, R.T.: Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 3, 726–727 (2006)

    Article  Google Scholar 

  101. Wang, L., Yang, R.T.: Hydrogen storage properties of carbons doped with ruthenium, platinum, and nickel nanoparticles. J. Phys. Chem. C 32, 12486–12494 (2008)

    Article  Google Scholar 

  102. Li, Y., Yang, R.T.: Hydrogen storage in low silica type X zeolites. J. Phys. Chem. B 34, 17175–17181 (2006)

    Article  Google Scholar 

  103. Li, Y., Yang, R.T.: Hydrogen storage on platinum nanoparticles doped on superactivated carbon. J. Phys. Chem. C 29, 11086–11094 (2007)

    Article  Google Scholar 

  104. Yang, F.H., Lachawiec, A.J., Jr., Yang, R.T.: Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J. Phys. Chem. B 12, 6236–6244 (2006)

    Article  Google Scholar 

  105. Wang, L., Yang, R.T.: Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover. Catal. Rev. – Sci. Eng. 4, 411–461 (2010)

    Article  CAS  Google Scholar 

  106. Wang, L., Stuckert, N.R., Chen, H., Yang, R.T.: Effects of Pt particle size on hydrogen storage on Pt-doped metal-organic framework IRMOF-8. J. Phys. Chem. C 11, 4793–4799 (2011)

    Article  Google Scholar 

  107. Stuckert, N.R., Wang, L., Yang, R.T.: Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework. Langmuir 14, 11963–11971 (2010)

    Article  Google Scholar 

  108. Yang, R.T., Wang, Y.: Catalyzed hydrogen spillover for hydrogen storage. J. Am. Chem. Soc. 12, 4224–4226 (2009)

    Article  Google Scholar 

  109. Wang, Z., Yang, F.H., Yang, R.T.: Enhanced hydrogen spillover on carbon surfaces modified by oxygen plasma. J. Phys. Chem. C 3, 1601–1609 (2010)

    Article  Google Scholar 

  110. Wang, L., Yang, R.T.: New sorbents for hydrogen storage by hydrogen spillover - a review. Energy Environ. Sci. 2, 268–279 (2008)

    Article  Google Scholar 

  111. Li, Y., Yang, R.T.: Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 25, 8136–8137 (2006)

    Article  Google Scholar 

  112. Campesi, R., Cuevas, F., Latroche, M., Hirscher, M.: Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks - revisited. Phys. Chem. Chem. Phys. 35, 10457–10459 (2010)

    Article  Google Scholar 

  113. Stadie, N.P., Purewal, J.J., Ahn, C.C., Fultz, B.: Measurements of hydrogen spillover in platinum doped superactivated carbon. Langmuir 19, 15481–15485 (2010)

    Article  Google Scholar 

  114. Oh, H., Gennett, T., Atanassov, P., Kurttepeli, M., Bals, S., Hurst, K.E., Hirscher, M.: Hydrogen adsorption properties of platinum decorated hierarchically structured templated carbons. Microporous Mesoporous Mater. 177, 66–74 (2013)

    Article  CAS  Google Scholar 

  115. Zhou, J., Wang, Q., Sun, Q., Jena, P., Chen, X.S.: Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. U.S.A. 7, 2801–2806 (2010)

    Article  Google Scholar 

  116. Yadav, A., Chakraborty, B., Gangan, A., Patel, N., Press, M.R., Ramaniah, L.M.: Magnetic moment controlling desorption temperature in hydrogen storage: a case of zirconium-doped graphene as a high capacity hydrogen storage medium. J. Phys. Chem. C 31, 16721–16730 (2017)

    Article  Google Scholar 

  117. Chettri, B., Patra, P.K., Srivastava, S., Laref, A., Rai, D.P.: Enhanced H2storage capacity of bilayer hexagonal boron nitride (h-BN) incorporating van der waals interaction under an applied external electric field. ACS Omega 34, 22374–22382 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2017M3D1A1039377), and by the Hydrogen Energy Innovation Technology Development Business through NRF funded by the Ministry of Science and ICT (NRF-2019M3E6A1104147). The authors are thankful to The Research Institute of Energy and Resources, Seoul National University  and SNU Materials Education/Research Division for Creative Global Leaders. One of the authors (CRP) would like to thank full-heartedly and dedicate this paper to the Great Seon(Zen) Master Daehang Kunsunim who enlightened him the Hanmaum Science of the Principle of Tri-Angular Circle and the Law of Five Get-Togethers.

Funding

The authors declare that they have no known competing financial interests or personal relationships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Rae Park.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to incorrect figure 8 and table 2. The figure and table have been corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, S.H., Sung, S.J., Yang, S.J. et al. Where to go for the Development of High-Performance H2 Storage Materials at Ambient Conditions?. Electron. Mater. Lett. 19, 1–18 (2023). https://doi.org/10.1007/s13391-022-00368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00368-2

Keywords

Navigation