Skip to main content
Log in

Development of an Efficient and Controllable Nano-porous Copper with Good Wettability and Capillary Performance for Wicks of Vapor Chamber

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

To meet the heat dissipation requirements of microelectronic devices, it is urgent to develop an efficient method to fabricate a controllable micro/nano structure for the wick in vapor chamber, which is widely investigated for its high thermal conductivity and small size. This work proposed a controllable fabrication of nano-porous copper (NPC) with high efficiency, which includes electrodeposition and dealloying. A uniform Cu–Zn alloy with single phase was prepared as the precursor for dealloying through electrodeposition. An innovative solution system for dealloying was developed for the fabrication of the bi-continuous NPC, in which the efficiency was improved ten times compared to the conventional acid solution. In addition, the effects of dealloying parameters on the NPC morphology and the process efficiency have also been studied systematically. Based on the above method, both good wettability and capillary performance were achieved by NPC with tunable pore size, which indicates its great application prospects in wicks for high-performance vapor chamber.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Semenov, O., Vassighi, A., Sachdev, M.: Impact of self-heating effect on long-term reliability and performance degradation in CMOS circuits. IEEE Trans. Device Mater. Reliab. 6, 17–27 (2006)

    Article  Google Scholar 

  2. Garimella, S.V., Fleischer, A.S., Murthy, J.Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S.H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B.A., Chorosinski, L., Baelmans, M., Sathyamurthy, P., Raad, P.E.: Thermal challenges in next-generation electronic systems. IEEE Trans. Compon. Packag. Technol. 31, 801–815 (2008)

    Article  Google Scholar 

  3. Tavakkoli, F., Ebrahimi, S., Wang, S., Vafai, K.: Analysis of critical thermal issues in 3D integrated circuits. Int. J. Heat Mass Transfer 97, 337–352 (2016)

    Article  Google Scholar 

  4. Zhang, S., Chen, J., Sun, Y., Li, J., Zeng, J., Yuan, W., Tang, Y.: Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe. Renew. Energy 135, 1133–1143 (2019)

    Article  CAS  Google Scholar 

  5. Sun, Y., Wu, Y., Cai, H., Luo, J., Wang, Y., Ding, G.: A modified 360° netting vein bionic structure for enhancing thermal properties of polymer/nanofiber/nanoparticle composite. Compos. A Appl. Sci. Manuf. 14, 106276 (2021)

    Article  CAS  Google Scholar 

  6. Tang, H., Tang, Y., Wan, Z., Li, J., Yuan, W., Lu, L., Li, Y., Tang, K.: Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Appl. Energy 223, 383–400 (2018)

    Article  Google Scholar 

  7. Xie, D., Sun, Y., Wang, G., Chen, S., Ding, G.: Significant factors affecting heat transfer performance of vapor chamber and strategies to promote it: a critical review. Int. J. Heat Mass Transfer 175, 121132 (2021)

    Article  Google Scholar 

  8. Lim, H.T., Kim, S.H., Im, H.D., Oh, K.H., Jeong, S.H.: Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation. J. Micromech. Microeng. 18, 105013 (2008)

    Article  CAS  Google Scholar 

  9. Wang, M., Cui, W., Hou, Y.: Thermal spreading resistance of grooved vapor chamber heat spreader. Appl. Therm. Eng. 153, 361–368 (2019)

    Article  Google Scholar 

  10. Li, B., Yin, X., Tang, W., Zhang, J.: Optimization design of grooved evaporator wick structures in vapor chamber heat spreaders. Appl. Therm. Eng. 166, 114657 (2020)

    Article  Google Scholar 

  11. Li, Y., Li, Z., Zhou, W., Zeng, Z., Yan, Y., Li, B.: Experimental investigation of vapor chambers with different wick structures at various parameters. Exp. Therm. Fluid Sci. 77, 132–143 (2016)

    Article  CAS  Google Scholar 

  12. Velardo, J., Date, A., Singh, R., Nihill, J., Date, A., Phan, T.L., Takahashi, M.: Experimental investigation of a vapour chamber heat spreader with hybrid wick structure. Int. J. Therm. Sci. 140, 28–35 (2019)

    Article  CAS  Google Scholar 

  13. Huang, D., Jia, L., Wu, H., Aaker, O.: Experimental investigation on the vapor chambers with sintered copper powder wick. J. Therm. Sci. 30, 1938–1950 (2021)

    Article  CAS  Google Scholar 

  14. Li, Y., Zhou, W., He, J., Yan, Y., Li, B., Zeng, Z.: Thermal performance of ultra-thin flattened heat pipes with composite wick structure. Appl. Therm. Eng. 102, 487–499 (2016)

    Article  Google Scholar 

  15. Chen, L., Deng, D., Huang, Q., Xu, X., Xie, Y.: Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED. Appl. Therm. Eng. 166, 114686 (2020)

    Article  Google Scholar 

  16. Pepelyshev, Y.N., Tsogtsaikhan, T.: Investigation of the pulse energy noise dynamics of IBR-2M using cluster analysis. Ann. Nucl. Energy 83, 50–56 (2015)

    Article  CAS  Google Scholar 

  17. Lu, L., Sun, J., Liu, Q., Liu, X., Tang, Y.: Influence of electrochemical deposition parameters on capillary performance of a rectangular grooved wick with a porous layer. Int. J. Heat Mass Transfer 109, 737–745 (2017)

    Article  CAS  Google Scholar 

  18. Zhong, G., Tang, Y., Ding, X., Chen, G., Li, Z.: Experimental investigation on wettability and capillary performance of ultrasonic modified grooved aluminum wicks. Int. J. Heat Mass Transfer 179, 121642 (2021)

    Article  CAS  Google Scholar 

  19. Zhang, Z., Wang, Y., Qi, Z., Zhang, W., Qin, J., Frenzel, J.: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629–12636 (2009)

    Article  CAS  Google Scholar 

  20. Qiu, H.J., Li, X., Xu, H.-T., Zhang, H.-J., Wang, Y.: Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C 2, 9788–9799 (2014)

    Article  CAS  Google Scholar 

  21. Chauvin, A., Delacôte, C., Molina-Luna, L., Duerrschnabel, M., Boujtita, M., Thiry, D., Du, K., Ding, J., Choi, C.-H., Tessier, P.-Y., El Mel, A.-A.: Planar arrays of nanoporous gold nanowires: when electrochemical dealloying meets nanopatterning. ACS Appl. Mater. Interfaces 8, 6611–6620 (2016)

    Article  CAS  Google Scholar 

  22. Li, Y., Jia, W.-Z., Song, Y.-Y., Xia, X.-H.: Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chem. Mater. 19, 5758–5764 (2007)

    Article  CAS  Google Scholar 

  23. Cheng, I.C., Hodge, A.M.: Morphology, oxidation, and mechanical behavior of nanoporous Cu foams. Adv. Eng. Mater. 14, 219–226 (2012)

    Article  CAS  Google Scholar 

  24. Lee, Y.-S., Sun, Y.-H., Cheng, I.C.: Self-organizing Ag-decorated nanoporous Cu by dealloying process. Scr. Mater. 208, 114337 (2022)

    Article  CAS  Google Scholar 

  25. Li, Y., Zhou, W., Li, Z., Chen, Z., Gan, Y.: Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions. Appl. Therm. Eng. 156, 471–484 (2019)

    Article  Google Scholar 

  26. Chen, Z., Li, Y., Zhou, W., Deng, L., Yan, Y.: Design, fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices. Energy Convers. Manage. 187, 221–231 (2019)

    Article  CAS  Google Scholar 

  27. Tang, Y., Tang, B., Qing, J., Li, Q., Lu, L.: Nanoporous metallic surface: facile fabrication and enhancement of boiling heat transfer. Appl. Surf. Sci. 258, 8747–8751 (2012)

    Article  CAS  Google Scholar 

  28. Diao, F., Xiao, X., Luo, B., Sun, H., Ding, F., Ci, L., Si, P.: Two-step fabrication of nanoporous copper films with tunable morphology for SERS application. Appl. Surf. Sci. 427, 1271–1279 (2018)

    Article  CAS  Google Scholar 

  29. Hayes, J.R., Hodge, A.M., Biener, J., Hamza, A.V., Sieradzki, K.: Monolithic nanoporous copper by dealloying Mn–Cu. J. Mater. Res. 21, 2611–2616 (2006)

    Article  CAS  Google Scholar 

  30. Chen, L.-Y., Yu, J.-S., Fujita, T., Chen, M.-W.: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221–1226 (2009)

    Article  CAS  Google Scholar 

  31. Tuan, N.T., Park, J., Lee, J., Gwak, J., Lee, D.: Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films. Corros. Sci. 80, 7–11 (2014)

    Article  CAS  Google Scholar 

  32. Erlebacher, J.: An atomistic description of dealloying. J. Electrochem. Soc. 151, C614 (2004)

    Article  CAS  Google Scholar 

  33. Mao, R., Liang, S., Wang, X., Yang, Q., Han, B.: Effect of preparation conditions on morphology and thermal stability of nanoporous copper. Corros. Sci. 60, 231–237 (2012)

    Article  CAS  Google Scholar 

  34. Sun, Y., Ren, Y., Yang, K.: New preparation method of micron porous copper through physical vacuum dealloying of Cu–Zn alloys. Mater. Lett. 165, 1–4 (2016)

    Article  CAS  Google Scholar 

  35. Yue, H., Zhang, C.C., Yang, Z.Q., Wang, H., Ding, G.F., Zhao, X.L.: A preparation method of patterned nanoporous copper. Adv. Mater. Res. 663, 322–325 (2013)

    Article  CAS  Google Scholar 

  36. Vivegnis, S., Krid, M., Delhalle, J., Mekhalif, Z., Renner, F.U.: Use of pyrophosphate and boric acid additives in the copper-zinc alloy electrodeposition and chemical dealloying. J. Electroanal. Chem. 848, 113310 (2019)

    Article  CAS  Google Scholar 

  37. Lu, H.-B., Li, Y., Wang, F.-H.: Synthesis of porous copper from nanocrystalline two-phase Cu–Zr film by dealloying. Scr. Mater. 56, 165–168 (2007)

    Article  CAS  Google Scholar 

  38. Yang, Q., Liang, S., Han, B., Wang, J., Mao, R.: Preparation and properties of enhanced bulk nanoporous coppers. Mater. Lett. 73, 136–138 (2012)

    Article  CAS  Google Scholar 

  39. Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001)

    Article  CAS  Google Scholar 

  40. Qi, Z., Weissmüller, J.: Hierarchical nested-network nanostructure by dealloying. ACS Nano 7, 5948–5954 (2013)

    Article  CAS  Google Scholar 

  41. Liu, K., Li, Y., Zhang, H., Liu, Y.: Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability. Appl. Surf. Sci. 439, 226–231 (2018)

    Article  CAS  Google Scholar 

  42. Li, Y., Zheng, W., Zhang, H., Wang, H., Cai, H., Zhang, Y., Yang, Z.: Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators. Nano Energy 70, 104540 (2020)

    Article  CAS  Google Scholar 

  43. Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936)

    Article  CAS  Google Scholar 

  44. Wenzel, R.N.: Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1466–1467 (1949)

    Article  CAS  Google Scholar 

  45. Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  46. Li, Q., Lan, Z., Chun, J., Lian, S., Wen, R., Ma, X.: Fabrication and capillary characterization of multi-scale micro-grooved wicks with sintered copper powder. Int. Commun. Heat Mass Transfer 121, 105123 (2021)

    Article  CAS  Google Scholar 

  47. Tang, Y., Tang, H., Li, J., Zhang, S., Zhuang, B., Sun, Y.: Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes. Appl. Therm. Eng. 115, 1020–1030 (2017)

    Article  CAS  Google Scholar 

  48. Huang, S., Wan, Z., Zhang, X., Yang, X., Tang, Y.: Evaluation of capillary performance of a stainless steel fiber–powder composite wick for stainless steel heat pipe. Appl. Therm. Eng. 148, 1224–1232 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank supports from the Shanghai Professional Technical Service Platform for Non-Silicon Micro-Nano Integrated Manufacturing. This work is supported by the National Key Research and Development Program of China (No. 2021YFB2011800) and the National Natural Science Foundation of China (No. 62104141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifu Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Cai, H., Li, Y. et al. Development of an Efficient and Controllable Nano-porous Copper with Good Wettability and Capillary Performance for Wicks of Vapor Chamber. Electron. Mater. Lett. 18, 465–474 (2022). https://doi.org/10.1007/s13391-022-00357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00357-5

Keywords

Navigation