Skip to main content
Log in

Unveiling the Root Cause of the Efficiency-Lifetime Trade-Off in Blue Fluorescent Organic Light-Emitting Diodes

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The origin of efficiency-lifetime trade-off in triplet–triplet fusion (TTF) type blue fluorescent organic light-emitting diodes (OLEDs) was investigated and the device structure to resolve the issue was developed. The efficiency and lifetime were simultaneously improved in the blue OLEDs by developing a multilayer hole transport stack which can adjust carrier densities and recombination zone in the emitting layer (EML). It was found that electron leakage from EML and high spatial density of excitons in the vicinity of the electron blocking layer for high TTF rates by narrow recombination zone are the detrimental factors for efficiency-lifetime trade-off. A multilayer hole transport stack employing a deep highest occupied molecular orbital hole transport layer and an electron blocking layer combined with an appropriate hole blocking layer simultaneously improved the power efficiency by 16% at 500 cd/m2 and lifetime by almost 100% (from 73 h up to 145 h). In addition, the low efficiency in the low luminance region was also completely controlled, resulting in negligible efficiency variation in the entire luminance range.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tang, C.W., VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987). https://doi.org/10.1063/1.98799

    Article  CAS  Google Scholar 

  2. Baldo, M.A., Lamansky, S., Burrows, P.E., Thompson, M.E., Forrest, S.R.: Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75(1), 4–6 (1999). https://doi.org/10.1063/1.124258

    Article  CAS  Google Scholar 

  3. Baldo, M.A., et al.: Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151 (1998). https://doi.org/10.1038/25954

    Article  CAS  Google Scholar 

  4. Kim, S., et al.: Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun. 9(1), 1211 (2018). https://doi.org/10.1038/s41467-018-03602-4

    Article  CAS  Google Scholar 

  5. Klubek, K.P., Dong, S.-C., Liao, L.-S., Tang, C.W., Rothberg, L.J.: Investigating blue phosphorescent iridium cyclometalated dopant with phenyl-imidazole ligands. Org. Electron. 15(11), 3127–3136 (2014). https://doi.org/10.1016/j.orgel.2014.08.038

    Article  CAS  Google Scholar 

  6. Seok, O.C., Min, C.J., Yeob, L.J.: Chemical bond stabilization and exciton management by CN modified host material for improved efficiency and lifetime in blue phosphorescent organic light-emitting diodes. Adv. Opt. Mater. 4(8), 1281–1287 (2016). https://doi.org/10.1002/adom.201600131

    Article  CAS  Google Scholar 

  7. Song, W., Kim, T., Lee, Y., Lee, J.Y.: A stepwise energy level doping structure for improving the lifetime of phosphorescent organic light-emitting diodes. J. Mater. Chem. C 5(16), 3948–3954 (2017). https://doi.org/10.1039/c7tc00556c

    Article  CAS  Google Scholar 

  8. Tsang, D.P.-K., Matsushima, T., Adachi, C.: Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci. Rep. 6, 22463 (2016). https://doi.org/10.1038/srep22463

    Article  CAS  Google Scholar 

  9. Sajoto, T., Djurovich, P.I., Tamayo, A.B., Oxgaard, J., Goddard, W.A., Thompson, M.E.: Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J. Am. Chem. Soc. 131(28), 9813–9822 (2009). https://doi.org/10.1021/ja903317w

    Article  CAS  Google Scholar 

  10. Giebink, N.C., D’Andrade, B.W., Weaver, M.S., Brown, J.J., Forrest, S.R.: Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105(12), 124514 (2009). https://doi.org/10.1063/1.3151689

    Article  CAS  Google Scholar 

  11. Giebink, N.C., et al.: Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103(4), 044509 (2008). https://doi.org/10.1063/1.2884530

    Article  CAS  Google Scholar 

  12. Zhang, Y., Lee, J., Forrest, S.R.: Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014). https://doi.org/10.1038/ncomms6008

    Article  CAS  Google Scholar 

  13. Kim, T., Lee, K.H., Lee, J.Y.: Superb lifetime of blue organic light-emitting diodes through engineering interface carrier blocking layers and adjusting electron leakage and an unusual efficiency variation at low electric field. J. Mater. Chem. C 6(31), 8472–8478 (2018). https://doi.org/10.1039/c8tc02286k

    Article  CAS  Google Scholar 

  14. Hofmann, S., et al.: Engineering blue fluorescent bulk emitters for OLEDs: triplet harvesting by green phosphors. Chem. Mater. 26(7), 2414–2426 (2014). https://doi.org/10.1021/cm500602y

    Article  CAS  Google Scholar 

  15. Zeng, W., et al.: Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. J. Mater. Chem. C 6(16), 4479–4484 (2018). https://doi.org/10.1039/c8tc00317c

    Article  CAS  Google Scholar 

  16. Kang, S.K. Taekyung, in preparation

  17. Kuma, H., Hosokawa, C.: Blue fluorescent OLED materials and their application for high-performance devices. Sci. Technol. Adv. Mater. 15(3), 034201 (2014). https://doi.org/10.1088/1468-6996/15/3/034201

    Article  Google Scholar 

  18. Wallikewitz, B.H., Kabra, D., Gélinas, S., Friend, R.H.: Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85(4), 045209 (2012)

    Article  Google Scholar 

  19. Gentry, S.T., Kopelman, R.: Triplet exciton transport in isotopic mixed naphthalene crystals. I. Kinetic analysis of trapping and fusion. J. Chem. Phys. 81(7), 3014–3021 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Research Foundation (NRF) Grants funded by the Korean Government (2019R1F1A1061080 and NRF-2019M3D1A2104068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Lee, J.Y. & Kim, T. Unveiling the Root Cause of the Efficiency-Lifetime Trade-Off in Blue Fluorescent Organic Light-Emitting Diodes. Electron. Mater. Lett. 16, 1–8 (2020). https://doi.org/10.1007/s13391-019-00180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00180-5

Keywords

Navigation