Skip to main content
Log in

Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm−2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Jang, M. J. Lance, S. Wen, T. T. Tsui, and G. M. Pharr, Acta Mater. 53, 1759 (2005).

    Article  Google Scholar 

  2. V. Domnich and Y. Gogotsi, Appl. Phys. Lett. 76, 2214 (2000).

    Article  Google Scholar 

  3. J. Yan, H. Takahashi, X. Gai, H. Harada, J. Tamaki, and T. Kuriyagawa, Mater. Sci. Eng. A 423, 19 (2006).

    Article  Google Scholar 

  4. Y. B. Gerbig, C. A. Michaels, A. M. Forster, and R. F. Cook, Phys. Rev. B 85, 104102 (2012).

    Article  Google Scholar 

  5. H. Huang, H. Zhao, C. Shi, L. Zhang, S. Wan, and C. Geng, Materials 6, 1496 (2013).

    Article  Google Scholar 

  6. X. Q. Yan, X. M. Huang, S. Uda, and M. W. Chen, Appl. Phys. Lett. 87, 191911 (2005).

    Article  Google Scholar 

  7. J. J. Guo, D. Pan, X. Q. Yan, T. Fujita, and M. W. Chen, Appl. Phys. Lett. 96, 251910 (2010).

    Article  Google Scholar 

  8. T. Hochbauer, A. Mirsa, and M. Nastasi, J. Appl. Phys. 92, 2335 (2002).

    Article  Google Scholar 

  9. D. Gu, H. Baumgart, K. K. Bourdelle, G. K. Celler, and A. A. Elmustafa, J. Appl. Phys. 48, 101202 (2009).

    Article  Google Scholar 

  10. G. B. Xiao, S. To, and E. V. Jelenković, J. Mater. Process. Tech. 225, 439 (2015).

    Article  Google Scholar 

  11. S. Reboh, F. Rieutord, L. Vignoud, F. Mazen, N. Cherkashin, M. Zussy, D. Landru, and C. Deguet, Appl. Phys. Lett. 103, 181911 (2013).

    Article  Google Scholar 

  12. J. F. Ziegler, SRIM–The Stopping and Range of Ions in Matter, http://www.srim.org/.

  13. I. D. Wolf, Semcond. Sci. Technol. 11, 139 (1996).

    Article  Google Scholar 

  14. D. Allen, J. Wittage, A. Zlotos, E. Gorosegui-Colinas, J. Garagorri, P. J. McNally, A. N. Danilewsky, and M. R. Elizalde, Nucl. Instrum. Meth. B 268, 383 (2010).

    Article  Google Scholar 

  15. M. K. Weldon, V. E. Marisico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, S. B. Christman, and E. E. Chaban, J. Vac. Sci. Technol. B 15, 1065 (1997).

    Article  Google Scholar 

  16. S. Ruffel, J. Vedi, J. E. Bradby, and J. S. Williams, J. Appl. Phys. 106, 123511 (2009).

    Article  Google Scholar 

  17. A. J. Pitera and E. A. Fitzgerald, J. Appl. Phys. 97, 104511 (2005).

    Article  Google Scholar 

  18. S. Ruffell, J. Vedi, J. E. Bradby, J. S. Williams, and B. Haberl, J. Appl. Phys. 105, 083520 (2009).

    Article  Google Scholar 

  19. E. V. Jelenković, S. To, B. Sundaravel, G. Xiao, and H. Huang, Appl. Phys. A 122, 708 (2016).

    Article  Google Scholar 

  20. J. Yan, K. Syoji, and J. Tamaki, CRIP Ann. Manuf. Technol. 61, 131 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil V. Jelenković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelenković, E.V., To, S. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen. Electron. Mater. Lett. 13, 393–397 (2017). https://doi.org/10.1007/s13391-017-6348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6348-6

Keywords

Navigation