Skip to main content
Log in

A facile green synthesis of Sm2O3 nanoparticles via microwave-assisted urea precipitation route and their optical properties

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Samarium oxide (Sm2O3) nanoparticles with a narrow size distribution were successfully synthesized by microwave-assisted using urea as precipitant without surfactant or template. The Sm2O3 particles were characterized using X-ray diffraction analysis, field-emission scanning electron microscopy, field-emission transmission electron microscopy and ultraviolet-visible-near-infrared spectrophotometer. The results showed that the samples prepared with different concentration of urea had different particle sizes. When the concentration of urea was 1.2 mol/L, the sample had the smallest particle size. A possible mechanism for the formation of the nanoparticles was proposed. Optical properties of Sm2O3 nanoparticles showed that the nanoparticles had a strong absorption property in the deep ultraviolet region between 200 nm and 270 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xiao, P. Li, F. Jia, and L. Zhang, J. Phys. Chem. C 113, 21034 (2009).

    Article  Google Scholar 

  2. L. Zhang and H. Zhu, Mater. Lett. 63, 272 (2009).

    Article  Google Scholar 

  3. M. Wu, C. Cheng, C. Lai, and T. M. Pan, Sensor. Actuat. BChem. 138, 221 (2009).

    Article  Google Scholar 

  4. J. Gao, J. Zhao, W. Yang, J. Tian, F. Guan, Y. Ma, J. Hou, J. Kang, and Y. Wang, Mater. Chem. Phys. 77, 65 (2002).

    Article  Google Scholar 

  5. T. W. Elkins and H. E. Hagelin-Weaver, Appl. Catal. AGen. 454, 100 (2013).

    Article  Google Scholar 

  6. Z. Xu, C. Li, P. Yang, Z. Hou, C. Zhang, and J. Lin, Cryst. Growth. Des. 9, 4127 (2009).

    Article  Google Scholar 

  7. L. Yin, D. Wang, J. Huang, G. Tan, and H. Ren, Mat. Sci. Semicon. Proc. 30, 9 (2015).

    Article  Google Scholar 

  8. N. Zhang, R. Yi, L. Zhou, G. Gao, R. Shi, G. Qiu, and X. Liu, Mater. Chem. Phys. 114, 160 (2009).

    Article  Google Scholar 

  9. A. B. Panda, G. Glaspell, and M. S. El-Shall, J. Phys. Chem. C. 111, 1861 (2007).

    Article  Google Scholar 

  10. Y. Zhu and F. Chen, Chem. Rev. 114, 6462 (2014).

    Article  Google Scholar 

  11. R. F. Gonçalves, M. J. Godinho, A. P. A. Marques, M. R. C. Santos, I. L. V. Rosa, E. Longo, M. Siu Li, J. L. S. Sa, and L. S. Cavalcante, Electron. Mater. Lett. 11, 193 (2015).

    Article  Google Scholar 

  12. M. Karimipour and M. Molaei, Electron. Mater. Lett. 12, 205 (2015).

    Article  Google Scholar 

  13. S. Sohn, Y. Kwon, Y. Kim, and D. Kim, Powder Technol. 142, 136 (2004).

    Article  Google Scholar 

  14. C. S. Riccardi, R. C. Lima, M. L. dos Santos, P. R. Bueno, J. A. Varela, and E. Longo, Solid State Ionics 180, 288 (2009).

    Article  Google Scholar 

  15. I. Y. Park, D. Kim, J. Lee, S. H. Lee, and K. J. Kim, Mater. Chem. Phys. 106, 149 (2007).

    Article  Google Scholar 

  16. T. Yan, D. Zhang, L. Shi, H. Yang, H. Mai, and J. Fang, Mater. Chem. Phys. 117, 234 (2009).

    Article  Google Scholar 

  17. J. Wang, L. Ge, Z. Li, L. Li, Q. Guo, and J. Li, Ceram. Int. 42, 8845 (2016).

    Google Scholar 

  18. S. Dai, Y. Liu, and Y. Lu, J. Colloid. Interf. Sci. 349, 34 (2010).

    Article  Google Scholar 

  19. A. M. Khachatourian, F. Golestani-Fard, H. Sarpoolaky, C. Vogt, and M. S. Toprak, Ceram. Int. 41, 2006 (2015).

    Article  Google Scholar 

  20. J. Su, H. Xue, M. Gu, H. Xia, and F. Pan, Ceram. Int. 40, 15051 (2014).

    Article  Google Scholar 

  21. J. Kang, B. Min, and Y. Sohn, J. Mater. Sci. 50, 1958 (2015).

    Article  Google Scholar 

  22. K. Nanda, R. S. Kundu, I. Pal, R. Punia, and N. Kishore, Mater. J. Alloys Compd. 676, 521 (2016).

    Article  Google Scholar 

  23. G. Venkataiah, C. K. Jayasankar, K. Venkata Krishnaiah, P. Dharmaiah, and N. Vijaya, Opt. Mater. 40, 26 (2015).

    Article  Google Scholar 

  24. K. K. Mahato, D. K. Rai, and S. B. Rai, Solid State Commun. 108, 671 (1998).

    Article  Google Scholar 

  25. S. Selvi, K. Marimuthu, and G. Muralidharan, J. Lumin. 159, 207 (2015).

    Article  Google Scholar 

  26. P. Karthikeyan, S. Arunkumar, C. Basavapoornima, and K. Marimuthu, J. Lumin. 178, 43 (2016).

    Article  Google Scholar 

  27. L. Vijayalakshmi, K. Naveen Kumar, and R. P. Vijayalakshmi, Opt. Mater. 57, 125 (2016).

    Article  Google Scholar 

  28. I. I. Kindrat, B. V. Padlyak, and R. Lisiecki, Opt. Mater. 49, 241 (2015).

    Article  Google Scholar 

  29. H. Zhang, H. Dai, Y. Liu, J. Deng, L. Zhang, and K. Ji, Mater. Chem. Phys. 129, 586 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansong Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Zhang, W., Li, X. et al. A facile green synthesis of Sm2O3 nanoparticles via microwave-assisted urea precipitation route and their optical properties. Electron. Mater. Lett. 13, 255–259 (2017). https://doi.org/10.1007/s13391-017-6173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6173-y

Keywords

Navigation