Skip to main content
Log in

Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

NiO-decorated SnO2 nanorods were synthesized by the thermal evaporation of Sn powders followed by the solvothermal deposition of NiO. A multi-networked p-n heterostructured nanorod sensor was fabricated by dropping the p-NiO-decorated n-SnO2 nanorods onto the interdigited electrode pattern and then annealing. The multi-networked p-n heterostructured nanorod sensor exhibited enhanced response to ethanol compared with the pristine SnO2 nanorod and NiO nanoparticle sensors. The former also exhibited a shorter sensing time for ethanol. Both sensors exhibited selectivity for ethanol over other volatile organic compounds (VOCs) such as HCHO, methanol, benzene and toluene and the decorated sensor exhibited superior selectivity to the other two sensors. In addition, the dominant sensing mechanism is discussed in detail by comparing the sensing properties and current-voltage characteristics of a p-NiO/n-SnO2 heterostructured nanorod sensor with those of a pristine SnO2 nanorod sensor and a pristine NiO nanoparticle sensor. Of the two competing electronic mechanisms: a potential barrier-controlled carrier transport mechanism at a NiO-SnO2 p-n junction and a surface-depletion-controlled carrier transport mechanism, the former has some contribution to the enhanced gas sensing performance of the p-n heterostructured nanorod sensor, however, its contribution is not as significant as that of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Park, G.-J. Sun, S. Kim, S. Lee, and C. Lee, Electron. Mater. Lett. 11, 572 (2015).

    Article  Google Scholar 

  2. S. Park, G.-J. Sun, S. Kim, S. B. Choi, S. Lee, and C. Lee, Electron. Mater. Lett. 11, 896 (2015).

    Article  Google Scholar 

  3. Y. Li, T. Lv, F.-X. Zhao, X.-X. Lian, Y.-L. Zou, and Q. Wang, Electron. Mater. Lett. 12, 411 (2016).

    Article  Google Scholar 

  4. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao, Sensor. Actuat. B-Chem. 199, 339 (2014).

    Article  Google Scholar 

  5. H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sensor. Actuat. B-Chem. 161, 594 (2012).

    Article  Google Scholar 

  6. A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005).

    Article  Google Scholar 

  7. Q. Kuang, C. Lao, Z. Li, and Y. J. Liu, Phys. Chem. B 112, 11539 (2008).

    Article  Google Scholar 

  8. S. Park, S. Park, J. Jung, T. Hong, S. Lee, H. W. Kim, and C. Lee, Ceram. Int. 40, 11051 (2014).

    Article  Google Scholar 

  9. D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, Sensor. Actuat. B-Chem. 200, 288 (2014).

    Article  Google Scholar 

  10. J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 49, 121 (1998).

    Article  Google Scholar 

  11. C. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, and H. Zhang, Sensor. Actuat. B-Chem. 156, 114 (2011).

    Article  Google Scholar 

  12. S.-W. Fan, A. K. Srivastava, and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009).

    Article  Google Scholar 

  13. J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).

    Article  Google Scholar 

  14. H.-J. Kim and J.-H. Lee, Sensor. Actuat. B-Chem. 192, 607 (2014).

    Article  Google Scholar 

  15. N. Barsan and U. Weimer, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

  16. O. V. Safonova, G. Delabouglise, B. Chenevier, A. M. Gaskov, and M. Labeau, Mater. Sci. Eng. C 21, 105 (2002).

    Article  Google Scholar 

  17. S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, and K. Shi, Nanoscale 7, 14643 (2015).

    Article  Google Scholar 

  18. D. R. Miller, S. A. Akbar, and P. A. Morris, Sens. Actuators B 204, 250 (2014).

    Article  Google Scholar 

  19. N. V. Hieu, H.-R. Kim, B.-K. Ju, and J.-H. Lee, Sensor. Actuat. B-Chem. 133, 228 (2008).

    Article  Google Scholar 

  20. S. Shi, Y. Liu, Y. Chen, J. Zhang, Y. Wang, and T. Wang, Sensor. Actuat. B-Chem. 140, 426 (2009).

    Article  Google Scholar 

  21. K. Ihokura, and J. Watson, The Stannic Oxide Gas Sensor—Principles and Applications, CRC Press, Boca Raton, USA (1994).

    Google Scholar 

  22. J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005).

    Article  Google Scholar 

  23. H. Kumagai, M. Matsumoto, K. Toyoda, and M. Obara, J. Mater. Sci. Lett. 15, 1081 (1996).

    Article  Google Scholar 

  24. T. Jinkawa, G. Sakai, J. Tamaki, N. Miura, and N. Yamazoe, J. Mol. Catal. A: Chem. 155, 193 (2000).

    Article  Google Scholar 

  25. V. Kovalenko, A. Zhukova, M. Rumyantseva, A. Gaskov, V. Yushchenko, I. Ivanova, and T. Pagnier, Sensor. Actuat. B-Chem. 126, 52 (2007).

    Article  Google Scholar 

  26. N. Hosseinpour, A. A. Khodadadi, A. Bahramian, and Y. Mortazavi, Langmuir 29, 14135 (2013).

    Article  Google Scholar 

  27. Z. I. Dai, C.-S. Lee, B.-Y. Kim, C.-H. Kwak, J.-W. Yoon, H.-M. Jeong, and J.-H. Lee, ACS Appl. Mater. Inter. 6, 16217 (2014).

    Article  Google Scholar 

  28. S. An, S. Park, H. Ko, and C. Lee, Appl. Phys. A 108, 53 (2012).

    Article  Google Scholar 

  29. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, and C. Lee, J. Hazard. Mater. 305, 130 (2016).

    Article  Google Scholar 

  30. J. Parrondo, R. Santhanam, F. Mijangos, and B. Rambabu, Int. J. Electrochem. Sci. 5, 1342 (2010).

    Google Scholar 

  31. K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, and J.-H. Lee, Sensor. Actuat. B-Chem. 146, 183 (2010).

    Article  Google Scholar 

  32. Y. Li, J. Xu, J. Chao, D. Chen, S. Ouyang, J. Ye, and G. Shen, J. Mater. Chem. 21, 12852 (2011).

    Article  Google Scholar 

  33. Z. Wen and L. Tianmo, Physic. B 405, 1345 (2010).

    Article  Google Scholar 

  34. S. Park, S. Kim, G.-J. Sun, and C. Lee, ACS Appl. Mater. Inter. 7, 8138 (2015).

    Article  Google Scholar 

  35. J. Wang, Y. Su, J. Xu, C. Ye, and F. Deng, Phys. Chem. Chem. Phys. 8, 2378 (2006).

    Article  Google Scholar 

  36. K. Tanabe and T. Yamaguchi, J. Res. Inst. Catal. Hokkaido University 11, 179 (1964).

    Google Scholar 

  37. H. Sachdeva, D. Dwivedi, R. R. Bhattacharjee, S. Khaturia, and R. Saroj, J. Chem. 2013, 606259 (2013).

    Article  Google Scholar 

  38. S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Inter. 5, 4285 (2013).

    Article  Google Scholar 

  39. X. Tong, Y. Qin, X. Guo, O. Moutanabbir, X. Ao, E. Pippel, L. Zhang, and M. Knez, Small 8, 3390 (2012).

    Article  Google Scholar 

  40. V. Múčka and J. Cabicar, Czech. Chem. Commun. 40, 236 (1975).

    Article  Google Scholar 

  41. C. Liangyuan, B. Shouli, Z. Guojun, L. Dianqing, C. Aifan, and C. C. Liu, Sensor. Actuat. B-Chem. 134, 360 (2008).

    Article  Google Scholar 

  42. F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, X. Li, and S. Ruan, Sensor. Actuat. B-Chem. 199, 346 (2014).

    Article  Google Scholar 

  43. H. Zhang, J. Feng, T. Fei, S. Liu, and T. Zhang, Sensor. Actuat. B-Chem. 190, 472 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongmu Lee or Taegyung Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GJ., Lee, J.K., Lee, W.I. et al. Ethanol sensing properties and dominant sensing mechanism of NiO-decorated SnO2 nanorod sensors. Electron. Mater. Lett. 13, 260–269 (2017). https://doi.org/10.1007/s13391-017-1719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-1719-6

Keywords

Navigation