Skip to main content
Log in

Asymptotic property of the time-dependent solution of the M/G/1 queueing model with single working vacation and vacation interruption

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper we consider an M/G/1 queueing model with single working vacation and vacation interruption. By studying the spectral properties of the corresponding operator we obtain that the time-dependent solution of the model strongly converges to its steady-state solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arendt, W., Batty, C.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc 306, 837–852 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Doshi, B.T.: Queueing systems with vavation—a survey. Queuieng Syst. 1, 29–66 (1986)

    Article  MATH  Google Scholar 

  4. Greiner, G.: Perturbing the boundary conditions of a generator. Houston J. Math. 13, 213–229 (1987)

    MATH  MathSciNet  Google Scholar 

  5. Gupur, G., Li, X.Z., Zhu, G.T.: Functional Analysis Method in Queueing Theory. Research Information Ltd., Hertfordshire (2001)

    MATH  Google Scholar 

  6. Gupur, G.: Functional Analysis Methods for Reliability Models. Springer, Basel (2011)

    Book  MATH  Google Scholar 

  7. Gupur, G.: Time-dependent analysis for a queue modeled by an infinite system of partial differential equations. Sci. China Math. 55, 985–1004 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gupur, G., Ehmet, R.: Asymptotic behavior of the time-dependent solution of an M/G/1 queueing model. Bound. Value Probl. 2013, 17 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haji, A., Radl, A.: A semigroup approach to queueing systems. Semigroup Forum. 75, 610–624 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jain, M., Agrawal, P.K.: \(M/E^k/1\) queueing system with working vacation. Qual. Technol. Quant. Manag. 4(4), 455–470 (2007)

    Article  MathSciNet  Google Scholar 

  11. Kasim, E.: Semigroup methods for the M/G/1 queueing model with working vacation and vacation interruption. J. Math. Res. 8(5), 56–77 (2016)

    Article  Google Scholar 

  12. Kasim, E., Gupur, G.: Asymptotic behavior of the time-dependent solution of the M/G/1 queueing model with second optional service. Bull. Malays. Math. Sci. Soc 39, 29–64 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim, J.D., Choi, D.W., Chae, K.C.: Analysis of queue-length distribution of the M/G/1 queue with working vacations. Hawaii Int. Conf. Stat. Relat. Fields 6, 5–8 (2003)

    Google Scholar 

  14. Li, J.H., Tian, N.S., Ma, Z.Y.: Performance analysis of GI/M/1 queue with working vacations and vacation interruption. Appl. Math. Model. 32(12), 2715–2730 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, W.Y., Xu, X.L., Tian, N.S.: Stochastic decompositions in the M/M/1 queue with working vacations. Oper. Res. Lett. 35(5), 595–600 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nagel, R.: One-Parameter Semigroups of Positive Operators. Springer, Berlin (1986)

    MATH  Google Scholar 

  17. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV). Perform. Eval. 50(1), 41–52 (2002)

    Article  Google Scholar 

  18. Wu, D., Takagi, H.: M/G/1 queue with multiple working vacations. Perform. Eval. 63(7), 654–681 (2006)

    Article  Google Scholar 

  19. Zhang, M., Hou, Z.: Performace analysis of M/G/1 queue with working vacation and vacation interruption. J. Comput. Appl. Math. 234, 2977–2985 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, M., Hou, Z.: M/G/1 queue with single working vacation. J. Appl. Math. Comput. 39(1), 221–234 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referees and associated editor for his/her careful reading of the manuscript. The author’ research work was supported by the Natural Science Foundation of Xinjiang (No.: 2015211C279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehmet Kasim.

Appendix

Appendix

Proof of of Lemma 2.2

For any \(f\in L^{1}[0,\infty ),\) by using integration by parts, we have

$$\begin{aligned} \Vert E_0f\Vert _{L^1[0,\infty )}&=\int ^{\infty }_0|E_0f(x)|dx\nonumber \\&= \int ^{\infty }_0\left| e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\int ^x_0f(\tau )e^{\int ^{\tau }_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }d\tau \right| dx\nonumber \\&\le \int ^{\infty }_0e^{-\int ^x_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\int ^x_0|f(\tau )|e^{\int ^{\tau }_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }d\tau dx\nonumber \\&= \int ^{\infty }_0\frac{-1}{\text {Re}\gamma +\lambda +\theta +\mu _0(x)}\int ^x_0|f(\tau )|e^{\int ^{\tau }_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }d\tau de^{-\int ^x_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\nonumber \\&\le \int ^{\infty }_0\frac{-1}{\text {Re}\gamma +\lambda +\theta +\underline{\mu _0}}\int ^x_0|f(\tau )|e^{\int ^{\tau }_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }d\tau de^{-\int ^x_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\nonumber \\&= -\frac{1}{\text {Re}\gamma +\lambda +\theta +\underline{\mu _0}}\Big \{e^{-\int ^x_0(\text {Re}\gamma +\lambda +\mu _0(\xi ))d\xi }\int ^x_0|f(\tau )|e^{\int ^{\tau }_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }d\tau \Big |^{x=\infty }_{x=0}\nonumber \\&\quad -\int ^{\infty }_0|f(x)|e^{\int ^x_0(\text {Re}\gamma +\lambda +\mu _0(\xi ))d\xi }e^{-\int ^x_0(\text {Re}\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }dx\Big \}\nonumber \\&=\frac{1}{\text {Re}\gamma +\lambda +\theta +\underline{\mu _0}}\Vert f\Vert _{L^1[0,\infty )}\nonumber \\&\Longrightarrow \nonumber \\ \Vert E_0\Vert&\le \frac{1}{\text {Re}\gamma +\lambda +\theta +\underline{\mu _0}}. \end{aligned}$$
(A.1)
$$\begin{aligned} \Vert E_1f\Vert _{L^1[0,\infty )}&= \int ^{\infty }_0|E_1f(x)|dx\nonumber \\&=\int ^{\infty }_0\left| e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }\int ^x_0f(\tau )e^{\int ^{\tau }_0(\gamma +\lambda +\mu _1(\xi ))d\xi }d\tau \right| dx\nonumber \\&\le \frac{1}{\text {Re}\gamma +\lambda +\underline{\mu _1}}\Vert f\Vert _{L^1[0,\infty )}\nonumber \\&\Longrightarrow \nonumber \\ \Vert E_1\Vert&\le \frac{1}{\text {Re}\gamma +\lambda +\underline{\mu _1}}. \end{aligned}$$
(A.2)

From (A.1) and (A.2) together with condition of this lemma and using \(\Vert \phi _0\Vert \le \overline{\mu _0},\;\Vert \phi _1\Vert \le \overline{\mu _1} \) we deduce, for any \((y_0,y_1)\in X\times Y\)

$$\begin{aligned}&\left\| (\gamma I-A_0)^{-1}(y_0,y_1)\right\| \\&\quad =\bigg |\frac{1}{\gamma +\lambda }y_{0,0}+\frac{1}{\gamma +\lambda }\phi _0E_0 y_{1,0}+\frac{1}{\gamma +\lambda }\phi _1E_1 y_{1,1}\bigg |\\&\qquad +\Vert E_0 y_{1,0}\Vert _{L^1[0,\infty )}+\left\| \lambda E_0^2 y_{1,0}+E_0 y_{2,0}\right\| _{L^1[0,\infty )}\\&\qquad +\left\| \lambda ^2 E_0^3 y_{1,0}+\lambda E_0^2 y_{2,0}+E_0 y_{3,0}\right\| _{L^1[0,\infty )}+\left\| \sum ^3_{k=0}\lambda ^k E_0^{k+1} y_{4-k,0}\right\| _{L^1[0,\infty )}\\&\qquad +\cdots +\left\| \sum ^{n-1}_{k=0}\lambda ^k E_0^{k+1} y_{n-k,0}\right\| _{L^1[0,\infty )}+\cdots \\&\qquad +\Vert E_1 y_{1,1}\Vert _{L^1[0,\infty )}+\left\| \lambda E_1^2 y_{1,1}+E_1 y_{2,1}\right\| _{L^1[0,\infty )}\\&\qquad +\left\| \lambda ^2 E_1^3 y_{1,1}+\lambda E_1^2 y_{2,1}+E_1 y_{3,1}\right\| _{L^1[0,\infty )}+\left\| \sum ^3_{k=0}\lambda ^k E_1^{k+1} y_{4-k,1}\right\| _{L^1[0,\infty )}\\&\qquad +\cdots +\left\| \sum ^{n-1}_{k=0}\lambda ^k E_1^{k+1} y_{n-k,1}\right\| _{L^1[0,\infty )}+\cdots \\&\quad \le \frac{1}{|\gamma +\lambda |}|y_{0,0}|+\frac{1}{|\gamma +\lambda |}\Vert \phi _0\Vert \Vert E_0\Vert \Vert y_{1,0}\Vert _{L^1[0,\infty )}\\&\qquad +\frac{1}{|\gamma +\lambda |}\Vert \phi _1\Vert \Vert E_1\Vert \Vert y_{1,1}\Vert _{L^1[0,\infty )}+\sum ^{\infty }_{n=1}\sum ^{n-1}_{k=0}\lambda ^k \Vert E_0\Vert ^{k+1} \Vert y_{n-k,0}\Vert _{L^1[0,\infty )}\\&\qquad +\sum ^{\infty }_{n=1}\sum ^{n-1}_{k=0}\lambda ^k \Vert E_1\Vert ^{k+1} \Vert y_{n-k,1}\Vert _{L^1[0,\infty )}\\&\quad \le \frac{1}{|\gamma +\lambda |}|y_{0,0}|+\frac{\overline{\mu _0}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0})}\Vert y_{1,0}\Vert _{L^1[0,\infty )}\\&\qquad +\frac{\overline{\mu _1}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\underline{\mu _1})} \Vert y_{1,1}\Vert _{L^1[0,\infty )}\\&\qquad +\frac{1}{\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0}}\sum ^{\infty }_{k=0} \left( \frac{\lambda }{\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0}}\right) ^k \sum ^{\infty }_{n=1} \Vert y_{n,0}\Vert _{L^1[0,\infty )}\\&\qquad +\frac{1}{\text{ Re }\gamma +\lambda +\underline{\mu _1}}\sum ^{\infty }_{k=0} \left( \frac{\lambda }{\text{ Re }\gamma +\lambda +\underline{\mu _1}}\right) ^k \sum ^{\infty }_{n=1} \Vert y_{n,1}\Vert _{L^1[0,\infty )}\\&\quad \le \sup \bigg \{\frac{1}{|\gamma +\lambda |},\frac{\overline{\mu _0}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0})}\\&\qquad + \frac{1}{\text{ Re }\gamma +\theta +\underline{\mu _0}} \bigg \} \left( |y_0|+\sum ^{\infty }_{n=1} \Vert y_{n,0}\Vert _{L^1[0,\infty )} \right) \\&\qquad +\sup \bigg \{\frac{1}{|\gamma +\lambda |},\frac{\overline{\mu _1}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\underline{\mu _1})}\\&\qquad + \frac{1}{\text{ Re }\gamma +\underline{\mu _1}} \bigg \} \sum ^{\infty }_{n=1} \Vert y_{n,1}\Vert _{L^1[0,\infty )} \\&\quad \le \sup \bigg \{\frac{1}{|\gamma +\lambda |},\frac{\overline{\mu _0}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0})}+ \frac{1}{\text{ Re }\gamma +\theta +\underline{\mu _0}},\\&\qquad +\frac{\overline{\mu _1}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\underline{\mu _1})}+\frac{1}{\text{ Re }\gamma +\underline{\mu _1}} \bigg \} \Vert (y_0,y_1)\Vert <\infty . \end{aligned}$$

This shows that the result of this lemma is right. \(\square \)

Proof of Lemma 2.3

If \((p_{0},p_{1})\in \ker (\gamma I-A_m),\) then \((\gamma I-A_m)(p_{0},p_{1})=0,\) which is equivalent to

$$\begin{aligned} (\gamma +\lambda ) p_{0,0}&=\int ^{\infty }_0 \mu _0(x) p_{1,0}(x)dx+\int ^{\infty }_0\mu _0(x)p_{1,1}(x)dx, \end{aligned}$$
(A.3)
$$\begin{aligned} \frac{dp_{1,0}(x)}{dx}&=-(\gamma +\lambda +\theta +\mu _0(x))p_{1,0}(x), \end{aligned}$$
(A.4)
$$\begin{aligned} \frac{dp_{n,0}(x)}{dx}&=-(\gamma +\lambda +\theta +\mu _0(x))p_{n,0}(x)+\lambda p_{n-1,0}(x),\quad n\ge 2, \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{dp_{1,1}(x)}{dx}&=-(\gamma +\lambda +\mu _0(x))p_{1,1}(x), \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{dp_{n,1}(x)}{dx}&=-(\gamma +\lambda +\mu _0(x))p_{n,1}(x)+\lambda p_{n-1,1}(x),\quad n\ge 2. \end{aligned}$$
(A.7)

By solving (A.4), (A.5) and (A.6), (A.7), we have

$$\begin{aligned} p_{1,0}(x)&=a_{1,0}e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }, \end{aligned}$$
(A.8)
$$\begin{aligned} p_{n,0}(x)&=a_{n,0}e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\nonumber \\&\quad +\lambda e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\int ^x_0 p_{n-1,0}(\tau )e^{\int ^{\tau }_0(\gamma +\lambda +\theta +\mu _0(\tau ))d\xi }d\tau ,\; n\ge 2, \end{aligned}$$
(A.9)
$$\begin{aligned} p_{1,1}(x)&=a_{1,1}e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }, \end{aligned}$$
(A.10)
$$\begin{aligned} p_{n,1}(x)&=a_{n,1}e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }\nonumber \\&\quad +\lambda e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }\int ^x_0p_{n-1,1}(\tau ) e^{\int ^{\tau }_0(\gamma +\lambda +\mu _1(\xi ))d\xi }d\tau ,\; n\ge 2. \end{aligned}$$
(A.11)

By using (A.8) and (A.9) repeatedly, we obtain

$$\begin{aligned} p_{2,0}(x)&=a_{2,0}e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }+\lambda e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\int ^x_0a_{1,0}d\tau \nonumber \\&=e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }[a_{2,0}+\lambda xa_{1,0}],\nonumber \\ p_{3,0}(x)&=a_{3,0}e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }+\lambda e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\int ^x_0[a_{2,0}+\lambda \tau a_{1,0}]d\tau \nonumber \\&=e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\left[ a_{3,0}+\lambda xa_{2,0}+\frac{(\lambda x)^2}{2}a_{1,0}\right] ,\nonumber \\&\cdots \cdots \nonumber \\ p_{n,0}(x)&=e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\left[ a_{n,0}+\lambda xa_{n-1,0}+\frac{(\lambda x)^2}{2}a_{n-2,0}+\cdots +\frac{(\lambda x)^n}{n!}a_{1,0}\right] \nonumber \\&=e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\sum ^{n-1}_{k=0}\frac{(\lambda x)^k}{k!}a_{n-k,0},\quad n\ge 1. \end{aligned}$$
(A.12)

Similarly, by applying (A.10) and (A.11) repeatedly, we deduce

$$\begin{aligned} p_{n,1}(x)=e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }\sum ^{n-1}_{k=0}\frac{(\lambda x)^k}{k!}a_{n-k,1},\quad n\ge 1. \end{aligned}$$
(A.13)

Through inserting (A.8) and (A.10) into (A.3), we derive

$$\begin{aligned} p_{0,0}&=\frac{1}{\gamma +\lambda }a_{1,0}\int ^{\infty }_0\mu _0(x)e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }dx\nonumber \\&\quad +\frac{1}{\gamma +\lambda }a_{1,1}\int ^{\infty }_0\mu _1(x)e^{-\int ^x_0(\gamma +\lambda +\mu _1(\xi ))d\xi }dx. \end{aligned}$$
(A.14)

Since \((p_{0},p_{1})\in \ker (\gamma I-D(A_m)),\) \((p_{0},p_{1})\in D(A_m)\) implies by the imbedding theorem in Adams [1],

$$\begin{aligned} \sum ^{\infty }_{n=1}|a_{n,0}|&=\sum ^{\infty }_{n=1}|p_{n,0}(0)|\le \sum ^{\infty }_{n=1}\Vert p_{n,0}\Vert _{L^{\infty }[0,\infty )}\\&\le \sum ^{\infty }_{n=1}\Vert p_{n,0}\Vert _{L^1[0,\infty )}+\sum ^{\infty }_{n=1}\left\| \frac{dp_{n,0}}{dx}\right\| _{L^1[0,\infty )}<\infty ,\\ \sum ^{\infty }_{n=1}|a_{n,1}|&=\sum ^{\infty }_{n=1}|p_{n,1}(0)|\le \sum ^{\infty }_{n=1}\Vert p_{n,1}\Vert _{L^{\infty }[0,\infty )}\\&\le \sum ^{\infty }_{n=1}\Vert p_{n,1}\Vert _{L^1[0,\infty )}+\sum ^{\infty }_{n=1}\left\| \frac{dp_{n,1}}{dx}\right\| _{L^1[0,\infty )}<\infty . \end{aligned}$$

From which together with (A.12)–(A.14) we know that (2.33) hold.

Conversely, if (2.33) is right, then by using \(\int ^{\infty }_0x^ke^{-bx}dx=\frac{k!}{b^{k+1}},\quad k\ge 1,\; b>0,\) integration by parts and the Fubini theorem we estimate

$$\begin{aligned} \Vert p_{n,0}\Vert _{L^1[0,\infty )}=&\int ^{\infty }_0\left| e^{-\int ^x_0(\gamma +\lambda +\theta +\mu _0(\xi ))d\xi }\sum ^{n-1}_{k=0}\frac{(\lambda x)^k}{k!}a_{n-k,0}\right| dx\nonumber \\ \le&\sum ^{n-1}_{k=0}|a_{n-k,0}|\frac{\lambda ^k}{k!}\int ^{\infty }_0 x^k e^{-\left( \text{ Re }\gamma +\lambda +\theta +\underline{\mu _0} \right) x}dx\nonumber \\ =&\sum ^{n-1}_{k=0}\frac{\lambda ^k}{(\text {Re}\gamma +\lambda +\theta +\underline{\mu _0})^{k+1}}|a_{n-k,0}|\nonumber \\&\Longrightarrow \nonumber \\ |p_{0,0}|+\sum ^{\infty }_{n=1}\Vert p_{n,0}\Vert _{L^1[0,\infty )}&=\frac{\overline{\mu _0}}{|\gamma +\lambda +\theta |(\text{ Re }\gamma +\lambda +\theta +\underline{\mu _0})}|a_{1,0}|\nonumber \\&\quad +\frac{\overline{\mu _1}}{|\gamma +\lambda +\theta |(\text{ Re }\gamma +\lambda +\underline{\mu _1})}|a_{1,1}|\nonumber \\&\quad +\frac{1}{\text {Re}\gamma +\theta +\underline{\mu _0}}\sum ^{\infty }_{n=1}|a_{n,0}|<\infty . \end{aligned}$$
(A.15)

Similarly, we get

$$\begin{aligned} \sum ^{\infty }_{n=1}\Vert p_{n,1}\Vert _{L^1[0,\infty )}&=\frac{\overline{\mu _1}}{|\gamma +\theta |(\text{ Re }\gamma +\lambda +\theta +\underline{\mu _1})}|a_{1,0}|\nonumber \\&\quad +\frac{\overline{\mu _1}}{|\gamma +\lambda |(\text{ Re }\gamma +\lambda +\underline{\mu _1})}|a_{1,1}|\nonumber \\&\quad +\frac{1}{\text {Re}\gamma +\theta +\underline{\mu _1}}\sum ^{\infty }_{n=1}|a_{n,1}|<\infty . \end{aligned}$$
(A.16)

(A.16) and (A.17) give

$$\begin{aligned} |p_{0,0}|+\sum ^{\infty }_{n=1}\Vert p_{n,0}\Vert _{L^1[0,\infty )}+\sum ^{\infty }_{n=1}\Vert p_{n,1}\Vert _{L^1[0,\infty )}<\infty . \end{aligned}$$

Since

$$\begin{aligned} \frac{dp_{1,0}(x)}{dx}&=-(\gamma +\lambda +\theta +\mu _0(x))p_{1,0}\\ \frac{dp_{n,0}(x)}{dx}&=-(\gamma +\lambda +\theta +\mu _0(x))p_{n,0}(x)+\lambda p_{n-1,0}(x),\quad n\ge 2, \\ \frac{dp_{1,1}(x)}{dx}&=-(\gamma +\lambda +\mu _1(x))p_{1,1}(x),\\ \frac{dp_{n,1}(x)}{dx}&=-(\gamma +\lambda +\mu _1(x))p_{n,1}(x)+\lambda p_{n-1,1}(x),\quad n\ge 2. \end{aligned}$$

It is immediately obtained

$$\begin{aligned} \sum ^{\infty }_{n=1}\left\| \frac{dp_{n,0}}{dx}\right\| _{L^1[0,\infty )}&\le (\text {Re}\gamma +\lambda +\theta +\overline{\mu _0})\sum ^{\infty }_{n=0}\Vert p_{n,0}\Vert _{L^1[0,\infty )}\nonumber \\&\quad +\lambda \sum ^{\infty }_{n=2}\Vert p_{n-1,0}\Vert _{L^1[0,\infty )}\nonumber \\&\le \left( \frac{\text {Re}\gamma +\lambda +\theta +\overline{\mu _0}}{\text {Re}\gamma +\theta +\underline{\mu _0}}+\frac{\lambda }{\text {Re}\gamma +\theta +\underline{\mu _0}}\right) \sum ^{\infty }_{n=1}|a_{n,0}|<\infty , \end{aligned}$$
(A.17)
$$\begin{aligned} \sum ^{\infty }_{n=1}\left\| \frac{dp_{n,1}}{dx}\right\| _{L^1[0,\infty )}&\le (\text {Re}\gamma +\lambda +\overline{\mu _1})\sum ^{\infty }_{n=1}\Vert p_{n,1}\Vert _{L^1[0,\infty )}\nonumber \\&\quad +\lambda \sum ^{\infty }_{n=2}\Vert p_{n-1,1}\Vert _{L^1[0,\infty )}\nonumber \\&\le \left( \frac{\text {Re}\gamma +\lambda +\overline{\mu _1}}{\text {Re}\gamma +\underline{\mu _1}}+\frac{\lambda }{\text {Re}\gamma +\underline{\mu _1}}\right) \sum ^{\infty }_{n=0}|a_{n,1}| <\infty . \end{aligned}$$
(A.18)

(A.15)–(A.18) show that \((p_{0},p_{1})\in \ker (\gamma I-A_m).\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasim, E., Gupur, G. Asymptotic property of the time-dependent solution of the M/G/1 queueing model with single working vacation and vacation interruption. Afr. Mat. 28, 1327–1348 (2017). https://doi.org/10.1007/s13370-017-0518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-017-0518-4

Keywords

Mathematics Subject Classification

Navigation