Skip to main content

Advertisement

Log in

MPPT Performance and Power Quality Improvement by Using Fractional-Order Adaptive Backstepping Control of a DFIG-Based Wind Turbine with Disturbance and Uncertain Parameters

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a fractional-order adaptive backstepping control (FOABC) with disturbance and uncertainty terms compensation for improving the MPPT (maximum power point tracking) performance and output power quality of a doubly fed induction generator (DFIG)-based wind turbine. In the proposed high-efficacy controller, disturbance and uncertainty terms are estimated in real time using an adaptive estimator designed using a recursion design process based on the nonlinear backstepping control. Meanwhile, a robust compensator is schemed and incorporated into the backstepping control algorithm so that it suppresses the effects of external disturbances and system uncertainties and, as a result, ensures the maximum wind energy extraction as much as possible, which is usually well known as MPPT. Furthermore, the fractional-order control approach was deployed in the proposed adaptive backstepping controller to provide a smooth control signal for enhancing the quality of the power injected into the grid. The stability analysis of the overall closed-loop system was performed using Lyapunov's stability theory. The high effectiveness of the proposed control method was assessed through simulation studies carried out in MATLAB/Simulink of a DFIG-wind turbine operating in various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

FOABC:

Fractional-order adaptive backstepping control

DFIG:

Doubly fed induction generator

MPPT:

Maximum power point tracking

PI:

Proportional-integral

LCF:

Lyapunov candidate functions

RSC:

Rotor side converter

PWM:

Pulse width modulation

TSR:

Tip speed ratio

SFOC:

Stator flux orientation control

FO:

Fractional-order

CBC:

Classical backstepping controller

FFT:

Fast Fourier transform

THD:

Total harmonic distortion

References

  1. Patel, R.; Hafiz, F.; Swain, A.; Ukil, A.: Nonlinear rotor side converter control of DFIG based wind energy system. Electr. Power Syst. Res. 198, 107358 (2021). https://doi.org/10.1016/j.epsr.2021.107358

    Article  Google Scholar 

  2. Rocha-Osorio, C.M.; Solís-Chaves, J.S.; Rodrigues, L.L.; Puma, J.A.; Sguarezi Filho, A.J.: Deadbeat–fuzzy controller for the power control of a Doubly Fed Induction Generator based wind power system. ISA Trans. 88, 258–267 (2019). https://doi.org/10.1016/j.isatra.2018.11.038

    Article  Google Scholar 

  3. Xiong, P.; Sun, D.: Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage. IEEE Trans. Power Electron. 31(6), 4216–4225 (2015). https://doi.org/10.1109/TPEL.2015.2477442

    Article  Google Scholar 

  4. Khedher, A.; Khemiri, N.; Mimouni, M.F.: Wind energy conversion system using DFIG controlled by backstepping and sliding mode strategies. Int. J. Renew. Energy Res. 2(3), 421–430 (2012). https://doi.org/10.20508/ijrer.v2i3.249.g6040

    Article  Google Scholar 

  5. Omeje, C.O.; Nnadi, D.B.; Odeh, C.I.: Theory and modeling of a 150KW doubly fed induction machine with bidirectional multi-level converters control using SVPWM technique. Arab. J. Sci. Eng. 39(8), 6339–6349 (2014). https://doi.org/10.1007/s13369-014-1275-4

    Article  Google Scholar 

  6. Bounadja, E.; Djahbar, A.; Boudjema, Z.: Variable structure control of a doubly fed induction generator for wind energy conversion systems. Energy Procedia 50, 999–1007 (2014). https://doi.org/10.1016/j.egypro.2014.06.119

    Article  Google Scholar 

  7. Sivakumar, T.A.; Linda, M.M.: Improving the dynamic performance of grid connected wind farms using modern UPFC. Microprocess. Microsyst. 74, 103015 (2020). https://doi.org/10.1016/j.micpro.2020.103015

    Article  Google Scholar 

  8. Roy, T. K.; Mahmud. M. A.; & Oo A. M. T.: Nonlinear backstepping controller design for improving fault ride through capabilities of DFIG-based wind farms. In: 2018 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2018. p 1–5. Doi: https://doi.org/10.1109/PESGM.2018.8586580

  9. Seixas, M.; Melício, R.; Mendes, V.M.F.: Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control. Energy 69, 357–369 (2014). https://doi.org/10.1016/j.energy.2014.03.025

    Article  Google Scholar 

  10. Zeghdi, Z.; Barazane, L.; Bekakra, Y.; Larabi, A.: Improved backstepping control of a DFIG based wind energy conversion system using ant lion optimizer algorithm. Period. Polytech. Electr. Eng. Comput. Sci. 66(1), 43–59 (2022). https://doi.org/10.3311/PPee.18716

    Article  Google Scholar 

  11. Li, S.H.; Haskew, T.A.; Williams, K.A.; Swatloski, R.P.: Control of DFIG wind turbine with direct-current vector control configuration. IEEE Trans. Sustain. Energy 3(1), 1–11 (2012)

    Article  Google Scholar 

  12. Benaama, K.; Khiat, M.; Barkat, S.: Real time modeling and control of a wind farm connected to a multi-bus network under faulty conditions. ISA Trans. 93, 384–398 (2019). https://doi.org/10.1016/j.isatra.2019.03.013

    Article  Google Scholar 

  13. Kerrouche, K.; Mezouar, A.; Belgacem, K.: Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. Energy Proc. 42, 239–248 (2013). https://doi.org/10.1016/j.egypro.2013.11.024

    Article  Google Scholar 

  14. Benamor, A.; Benchouia, M.T.; Srairi, K.; Benbouzid, M.E.H.: A new rooted tree optimization algorithm for indirect power control of wind turbine based on a doubly-fed induction generator. ISA Trans. 88, 296–306 (2019). https://doi.org/10.1016/j.isatra.2018.11.023

    Article  Google Scholar 

  15. Balcazar, R.; Rubio, J.D.J.; Orozco, E., et al.: The regulation of an electric oven and an inverted pendulum. Symmetry. 14(4), 759 (2022). https://doi.org/10.3390/sym14040759

    Article  Google Scholar 

  16. Villaseñor Rios, C.A.; Luviano-Juárez, A.; Lozada-Castillo, N.B., et al.: Flatness-based active disturbance rejection control for a PVTOL aircraft system with an inverted pendular load. Machines 10(7), 595 (2022). https://doi.org/10.3390/machines10070595

    Article  Google Scholar 

  17. Silva-Ortigoza, R.; Hernández-Márquez, E.; Roldán-Caballero, A., et al.: Sensorless tracking control for a “full-bridge buck inverter–dc motor” system: passivity and flatness-based design. IEEE Access. 9, 132191–132204 (2021). https://doi.org/10.1109/ACCESS.2021.3112575

    Article  Google Scholar 

  18. Kasbi, A.; Rahali, A.: Performance optimization of doubly-fed induction generator (DFIG) equipped variable-speed wind energy turbines by using three-level converter with adaptive fuzzy PI control system. Mater. Today Proc. 47, 2648–2656 (2021). https://doi.org/10.1016/j.matpr.2021.05.406

    Article  Google Scholar 

  19. Nadour, M.; Essadki, A.; Nasser, T.: Comparative analysis between PI & backstepping control strategies of DFIG driven by wind turbine. Int. J. Renew. Energy Res. 7(3), 1307–1316 (2017). https://doi.org/10.20508/ijrer.v7i3.6066.g7163

    Article  Google Scholar 

  20. Kammoun, S.; Sallem, S.; Kammoun, M.B.A.: Backstepping control for low-voltage ride through enhancement of DFIG-based wind turbines. Arab. J. Sci. Eng. 42(12), 5083–5099 (2017). https://doi.org/10.1007/s13369-017-2606-z

    Article  Google Scholar 

  21. Parvaresh, A.; Abrazeh, S.; Mohseni, S.R.; Zeitouni, M.J.; Gheisarnejad, M.; Khooban, M.H.: A novel deep learning backstepping controller-based digital twins technology for pitch angle control of variable speed wind turbine. Designs 4(2), 15 (2020). https://doi.org/10.3390/designs4020015

    Article  Google Scholar 

  22. Mechter, A.; Kemih, K.; Ghanes, M.: Backstepping control of a wind turbine for low wind speeds. Nonlinear Dyn. 84(4), 2435–2445 (2016). https://doi.org/10.1007/s11071-016-2655-y

    Article  MathSciNet  Google Scholar 

  23. Nemmour, A.L.; Mehazzem, F.; Khezzar, A.; Hacil, M.; Louze, L.; Abdessemed, R.: Advanced backstepping controller for induction generator using multi-scalar machine model for wind power purposes. Renew. Energy 35(10), 2375–2380 (2010). https://doi.org/10.1016/j.renene.2010.02.016

    Article  Google Scholar 

  24. Zhang, Z.Z.; Zou, J.X.; Zheng, G.; Xu, H.B.: Observer-based backstepping control of the half-direct permanent magnet wind power generation system. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(4), 441–450 (2012). https://doi.org/10.1177/0959651811426228

    Article  Google Scholar 

  25. Trabelsi, R.; Khedher, A.; Mimouni, M.F.; M’sahli, F.: Backstepping control for an induction motor using an adaptive sliding rotor-flux observer. Electr. Power Syst. Res. 93, 1–15 (2012). https://doi.org/10.1016/j.epsr.2012.06.004

    Article  Google Scholar 

  26. Roy, T.K.; Mahmud, M.A.; Oo, A.M.: Robust adaptive backstepping excitation controller design for higher-order models of synchronous generators in multimachine power systems. IEEE Trans. Power Syst. 34(1), 40–51 (2018). https://doi.org/10.1109/TPWRS.2018.2868783

    Article  Google Scholar 

  27. Yin, W.; Wu, X.; Rui, X.: Adaptive robust backstepping control of the speed regulating differential mechanism for wind turbines. IEEE Trans. Sustain. Energy 10(3), 1311–1318 (2018). https://doi.org/10.1109/TSTE.2018.2865631

    Article  Google Scholar 

  28. Adekanle, O.S.; Guisser, M.; Abdelmounim, E.; Aboulfatah, M.: Observer-based adaptive backstepping control of grid-connected wind turbine under deep grid voltage dip. In: Recent Advances in Electrical and Information Technologies for Sustainable Development, pp. 75–84. Springer, Cham (2019)

    Chapter  Google Scholar 

  29. Wang, J.; Bo, D.; Ma, X.; Zhang, Y.; Li, Z.; Miao, Q.: Adaptive back-stepping control for a permanent magnet synchronous generator wind energy conversion system. Int. J. Hydrogen Energy 44(5), 3240–3249 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.023

    Article  Google Scholar 

  30. Kasbi, A.; Rahali, A.: Performance improvement of modern variable-velocity wind turbines technology based on the doubly-fed induction generator (DFIG). Mater. Today Proc. 45, 5426–5432 (2021). https://doi.org/10.1016/j.matpr.2021.02.114

    Article  Google Scholar 

  31. Roy, T. K.; Mahmud, M. A.; Islam, S. N.; Oo, A. M.; & Muttaqi, K. M.: Enhancement of fault ride through capabilities for grid-connected DFIG-based wind farms using nonlinear adaptive backstepping controllers. In: 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE. p. 1–6 (2018).

  32. Kot, R.; Rolak, M.; Malinowski, M.: Comparison of maximum peak power tracking algorithms for a small wind turbine. Math. Comput. Simul. 91, 29–40 (2013). https://doi.org/10.1016/j.matcom.2013.03.010

    Article  MathSciNet  Google Scholar 

  33. Nasef, S.A.; Hassan, A.A.; Elsayed, H.T.; Zahran, M.B.; El-Shaer, M.K.; Abdelaziz, A.Y.: Optimal tuning of a new multi-input multi-output fuzzy controller for doubly fed induction generator-based wind energy conversion system. Arab. J. Sci. Eng. 47(3), 3001–3021 (2022). https://doi.org/10.1007/s13369-021-05946-4

    Article  Google Scholar 

  34. Morawiec, M.; Blecharz, K.; Lewicki, A.: Sensorless rotor position estimation of doubly fed induction generator based on backstepping technique. IEEE Trans. Industr. Electron. 67(7), 5889–5899 (2019). https://doi.org/10.1109/TIE.2019.2955403

    Article  Google Scholar 

  35. Kasbi, A.; Rahali, A.: Adaptive FOPI controller based on the fuzzy supervisory for wind power conversion system equipped by a doubly fed induction generator. Int. Trans. Electr. Energy Syst. 31(8), e12923 (2021). https://doi.org/10.1002/2050-7038.12923

    Article  Google Scholar 

  36. Chen, S.Y.; Li, T.H.; Chang, C.H.: Intelligent fractional-order backstepping control for an ironless linear synchronous motor with uncertain nonlinear dynamics. ISA Trans. 89, 218–232 (2019). https://doi.org/10.1016/j.isatra.2018.12.036

    Article  Google Scholar 

  37. Naidu, R.P.K.; Meikandasivam, S.: Power quality enhancement in a grid-connected hybrid system with coordinated PQ theory & fractional order PID controller in DPFC Sustainable. Sustain. Energy Grids Netw. 21, 100317 (2020). https://doi.org/10.1016/j.segan.2020.100317

    Article  Google Scholar 

  38. Soomro, M.A.; Memon, Z.A.; Kumar, M.; Baloch, M.H.: Wind energy integration: dynamic modeling and control of DFIG based on super twisting fractional order terminal sliding mode controller. Energy Rep. 7, 6031–6043 (2021). https://doi.org/10.1016/j.egyr.2021.09.022

    Article  Google Scholar 

  39. Asgharnia, A.; Shahnazi, R.; Jamali, A.: Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms. ISA Trans. 79, 27–44 (2018). https://doi.org/10.1016/j.isatra.2018.04.016

    Article  Google Scholar 

  40. Xiong, L.; Li, P.; Ma, M.; Wang, Z.; Wang, J.: Output power quality enhancement of PMSG with fractional order sliding mode control. Int. J. Electr. Power Energy Syst. 115, 105402 (2020). https://doi.org/10.1016/j.ijepes.2019.105402

    Article  Google Scholar 

  41. Labbadi, M.; El Moussaoui, H.: An improved adaptive fractional-order fast integral terminal sliding mode control for distributed quadrotor. Math. Comput. Simul. 188, 120–134 (2021). https://doi.org/10.1016/j.matcom.2021.03.039

    Article  MathSciNet  MATH  Google Scholar 

  42. Mahvash, H.; Taher, S.A.; Rahimi, M.; Shahidehpour, M.: Enhancement of DFIG performance at high wind speed using fractional order PI controller in pitch compensation loop. Int. J. Electr. Power Energy Syst. 104, 259–268 (2019). https://doi.org/10.1016/j.ijepes.2018.07.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellatif Kasbi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasbi, A., Rahali, A. MPPT Performance and Power Quality Improvement by Using Fractional-Order Adaptive Backstepping Control of a DFIG-Based Wind Turbine with Disturbance and Uncertain Parameters. Arab J Sci Eng 48, 6595–6614 (2023). https://doi.org/10.1007/s13369-022-07474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07474-1

Keywords

Navigation