Skip to main content
Log in

Investigating Static and Dynamic Behavior of the Strain Gauge Type Pressure Sensor in Exposure to Thermal Stresses

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the extreme importance of pressure measurement in various industrial applications, studying different types of failures possible in a pressure sensor seems to be very necessary. The presented research analyses thermally affected faults in a strain gauge type pressure sensor. The studied electro-mechanical sensor is composed of a thick plate and a very thin membrane in direct contact with the fluid whose pressure is being measured. The membrane is connected to the sensing plate via the incompressible interface fluid (silicone oil). The temperature difference between the membrane and the body of the sensor creates thermal stresses in the membrane. The equations governing the motion of the sensing plate and membrane in the presence of temperature differences have been presented and solved simultaneously. The occurrence of the buckling phenomenon is studied for the first and second deformation modes of the membrane. It has been shown that in the second deformation mode of the membrane, the existing coupling between the membrane and the plate vanishes which leads to the decrement of the equivalent stiffness of the structure. Therefore, the probability of the occurrence of the buckling phenomenon in the membrane increases significantly compared to the first deformation mode. The effect of geometrical parameters of the sensor on the measurable pressure range of the sensor is investigated in detail. The transient response of the sensor subjected to the dynamic pressure force is studied. The effect of nonlinear terms on the frequency response of the sensor has also been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nayak, M.M.; Gunasekaran, N.; Rajanna, K.; Srinivasulu, S.; Mohan, S.: The strain gauge pressure transducers—an overview. IETE Tech Rev 9(2), 170–177 (1992)

    Article  Google Scholar 

  2. Bakhoum, E.G.; Cheng, M.H.M.: Capacitive pressure sensor with very large dynamic range. IEEE Trans. Compon. Packag. Technol. 33(1), 79–83 (2010)

    Article  Google Scholar 

  3. Yang, J.; Ye, Y.; Li, X.; Lü, Z.; Chen, R.: Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application, composite. Sci. Technol. 164(18), 187–194 (2018)

    Google Scholar 

  4. Tandeske, D.: Pressure sensors: selection and application. Marcel Dekker, New York (1991)

    Google Scholar 

  5. Luo, S.; Yang, J.; Song, Z.; Zhou, X.; Yu, L.; Sun, T.; Yu, C.; Huang, D.; Du, C.; We, D.: Tunable-sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electron. 145, 29–33 (2018)

    Article  Google Scholar 

  6. Lee, Y.; Wise, K.A.: Batch-fabricated silicon capacitive pressure transducer with low-temperature sensitivity. IEEE Trans. Electron Devices 29, 42–48 (1982)

    Article  Google Scholar 

  7. Hierold, C.; Clasbrummel, B.; Behrend, D.; Scheiter, T.; Steger, M.; Oppermann, K.; Kapels, H.; Landgraf, E.; Wenzel, D.; Etzrodt, D.: Low power integrated pressure sensor system for medical applications. Sens. Actuators A Phys. 73, 58–67 (1999)

    Article  Google Scholar 

  8. Palasagaram, J.N.; Ramadoss, R.: MEMS-capacitive pressure sensor fabricated using printed-circuit-processing techniques. IEEE Sens. J. 6, 1374–1375 (2006)

    Article  Google Scholar 

  9. Van Der Heyden, F.; Blom, M.; Gardeniers, J.; Chmela, E.; Elwenspoek, M.; Tijssen, R.; Berg, A.V.D.: A low hydraulic capacitance pressure sensor for integration with a microviscosity detector. Sens. Actuators B Chem. 92, 102–109 (2003)

    Article  Google Scholar 

  10. Xu, M.; Geiger, H.; Dakin, J.: Fiber grating pressure sensor with enhanced sensitivity using a glass-bubble housing. Electron. Lett. 32, 128 (1996)

    Article  Google Scholar 

  11. Arkwright, J.W.; Underhill, I.D.; Maunder, S.A.; Jafari, A.; Cartwright, N.; Lemckert, C.: Fiber optic pressure sensing arrays for monitoring horizontal and vertical pressures generated by traveling water waves. IEEE Sens. J. 14, 2739–2742 (2014)

    Article  Google Scholar 

  12. Xu, J.; Wang, X.; Cooper, K.L.; Wang, A.: Miniature all-silica fiber optic pressure and acoustic sensors. Opt. Lett. 30, 3269–3271 (2005)

    Article  Google Scholar 

  13. Sabry, Y.M.; Khalil, D.; Bourouina, T.: Monolithic silicon-micromachined free-space optical interferometers on-chip. Laser Photonics Rev. 9, 1–24 (2015)

    Article  Google Scholar 

  14. Zhang, D.; Wang, M.; Yang, Z.: Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. Sens. Actuators B Chem. 292, 187–195 (2019)

    Article  Google Scholar 

  15. Zhang, S.; Zhang, L.; Wang, L.; Wang, F.; Pan, G.A.: Flexible e-skin based on micro-structured PZT thin films prepared via a low-temperature PLD method. J. Mater. Chem. 7, 4760–4769 (2019)

    Google Scholar 

  16. Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N.: Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J. Appl. Phys. 100, 114318 (2006)

    Article  Google Scholar 

  17. Toprak, A.; Tigli, O.: Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 1, 31104 (2014)

    Article  Google Scholar 

  18. Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhan, J.-X.; Ma, Y., et al.: An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. 6, 12446–12467 (2018)

    Google Scholar 

  19. Santosh Kumar, S.; Pant, B.D.: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20, 1213–1247 (2014)

    Article  Google Scholar 

  20. Tsai, H.H.; Hsieh, C.C.; Fan, C.W.; Chen, Y.C.; Wu, W.T.: Design and characterization of temperature-robust piezoresistive micropressure sensor with double wheatstone-bridge structure. Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, Rome, Italy (2009)

  21. Burg, B.R.; Helbling, R.; Hierold, C.; Poulikakos, D.: Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotube. J. Appl. Phys. 109(6), 064310 (2011)

    Article  Google Scholar 

  22. Zhang, Y.H.; Yang, C.; Zhang, Z.H.; Hw, L.; Liu, L.T.; Ren, T.L.: A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high stress bulk silicon region. IEEE Sens. J. 7(12), 1742–1748 (2007)

    Article  Google Scholar 

  23. Chen, S.; Zhu, M.Q.; Ma, B.H.; Yuan, W. Z.: Design and optimization of micro piezoresistive pressure sensor. 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China (2008)

  24. Song, P.; Ma, Z.; Ma, J.; Yang, L., et al.: Recent progress of miniature MEMS sensors. Micromachines 11, 56 (2020)

    Article  Google Scholar 

  25. Ghanbari, M.; Hossainpour, S.; Rezazadeh, G.: On the modeling of a piezoelectrically actuated microsensor for measurement of micro-scale fluid physical properties. Appl. Phys. A 121(2), 651–663 (2015)

    Article  Google Scholar 

  26. Rezazadeh, G.; Ghanbari, M.: On the mathematical modeling of a MEMS-based sensor for simultaneous measurement of fluids viscosity and density. Sens. Imaging (2018). https://doi.org/10.1007/s11220-018-0213-z

    Article  Google Scholar 

  27. Ghanbari, M.; Rezazadeh, G.: An electrostatically actuated microsensor for determination of micropolar fluid physical properties. Meccanica (2020). https://doi.org/10.1007/s11012-020-01242-x

    Article  MathSciNet  Google Scholar 

  28. Ghanbari, M.; Rezazadeh, G.: A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsyst. Technol. 26, 617–623 (2020)

    Article  Google Scholar 

  29. Paliwal, S.; Yenuganti, S.: Design and simulation of digital output MEMS pressure sensor. Arab. J. Sci. Eng. 45, 6661–6673 (2020)

    Article  Google Scholar 

  30. Sathyanarayanan, S.; Juliet, A.V.: Modeling and Analyses of thin film PolySi diaphragm pressure sensor. Arab. J. Sci. Eng. 38, 679–683 (2013)

    Article  Google Scholar 

  31. Chau, H.L.; Wise, K.D.: An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron Devices 35, 2355 (1998)

    Article  Google Scholar 

  32. Kalvesten, E.; Smith, L.; Tenerz, L.; Stemme, G.: The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings of the Eleventh Annual International Workshop on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176), Heidelberg, Germany, 25–29 January :574–579 (1998)

  33. Allen, H.; Ramzan, K.; Withers, S.; Knutti, J.: A Novel Ultra-miniature catheter tip pressure sensor fabricated using silicon and glass thinning techniques. MRS Proc, 681 (2001)

  34. Melvås, P.; Kälvesten, E.; Stemme, G.A.: temperature compensated dual beam pressure sensor. Sens. Actuators A Phys. 100, 46–53 (2002)

    Article  Google Scholar 

  35. Melvås, P.; Kälvesten, E.; Enoksson, P.; Stemme G.: Miniaturized pressure sensor using a free hanging strain-gauge with leverage effect for increased sensitivity. In Transducers ’01 Eurosensors XV: The 11th International Conference on Solid-State Sensors and Actuators, 10–14 June 2001, Munich, Germany; Springer: Berlin/Heidelberg, Germany: 494–497 (2001)

  36. Eswaran, P.; Malarvizhi, S.: Design analysis of MEMS capacitive differential pressure sensor for aircraft altimeter. Int. J. Appl. Phys. Math. 2, 14–20 (2012)

    Article  Google Scholar 

  37. Eswaran, P.; Malarvizhi, S.: Simulation analysis of MEMS based capacitive differential pressure sensor for aircraft application. Adv. Mater. Res. 403, 4152–4156 (2011)

    Article  Google Scholar 

  38. Chen, H.; Buric, M.; Ohodnicki, P.R.; Nakano, J.; Liu, B.; Chorpening, B.T.: Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev. 5, 11102 (2018)

    Article  Google Scholar 

  39. Corradetti, A.; Leoni, R.; Carluccio, R.; Fortunato, G.; Reita, C.; Plais, F.; Pribat, D.: Evidence of carrier number fluctuation as origin of 1/f noise in polycrystalline silicon thin film transistors. Appl. Phys. Lett. 67, 1730–1732 (1995)

    Article  Google Scholar 

  40. DelRio, F.W.; Cook, R.F.; Boyce, B.L.: Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2, 021303 (2015)

    Article  Google Scholar 

  41. Bhat, K.; Nayak, M.: MEMS pressure sensors-an overview of challenges in technology and packaging. Smart Struct. Syst. 2, 1–10 (2013)

    Google Scholar 

  42. Soltani, K.; Bushuev, O.Y.; Tugova, E.; Ghanbari, M.; Henry, M.P.; Rezazadeh, G.: Modelling Fluid Loss Faults in an Industrial Pressure Sensor, IEE Global Smart Industry Conference, Chelyabinsk, Russia (2020)

  43. Lin, L.; Chu, H.C.; Lu, Y.W.: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. J. Microelectromech. Syst. 8(4), 514–522 (1999)

    Article  Google Scholar 

  44. Rao, S.S.: Vibration of continuous systems, p. 14. Wiley, NY (2007)

    Google Scholar 

  45. Velzen, D.V.; Cardozo, R.L.; Langenkamp, H.: A liquid viscosity-temperature-chemical constitution relation for organic components. Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ghanbari.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M., Rezazadeh, G. Investigating Static and Dynamic Behavior of the Strain Gauge Type Pressure Sensor in Exposure to Thermal Stresses. Arab J Sci Eng 47, 8931–8944 (2022). https://doi.org/10.1007/s13369-021-06443-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06443-4

Keywords

Navigation