Skip to main content
Log in

The Prediction of Ground Settlement of a Box Culvert Jacked Under the Action of an Ultra-Shallow Buried Pipe Curtain

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With the development of three-dimensional (3D) underground space, the jacking method of a pipe curtain box culvert has received greater attention due to its unique advantages in controlling the ground settlement. This paper proposes a new method for predicting ground settlement during box culvert jacking under the action of an ultra-shallow buried pipe curtain and then reveals the influence of jacking force and grouting rate on ground settlement. The results show that the calculation method based on stochastic medium theory and the Navier solution of the elastic sheet model can predict the ground settlement caused by volume loss of jacking and deformation of a pipe-roof. During the excavation of the passage, the deformation of the ground monitoring points is uplift, micro-uplift, and settlement. The settlement trough on a cross section is W-shaped; the closer to the cross section in the middle of the passageway, the greater the ground settlement. Moreover, when the jacking force is less than 40 kPa, the total settlement decreases with an increase in the jacking force. The scope of the W-type settlement profile is not affected by the jacking force and the grouting rate can significantly control ground settlement. Changing the grouting rate will affect the scope of the W-type settlement profile. An insufficient grouting rate will widen the gap of the ground settlement between the initial cross section, arrival cross section, and cross section in the middle of the passageway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Demeijer, O.; Chen, J.-J.; Li, M.-G.; Wang, J.-H.; Xu, C.-J.: Influence of passively loaded piles on excavation-induced diaphragm wall displacements and ground settlements. Int. J. Geomech. 18, 04018052 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001126

    Article  Google Scholar 

  2. Li, M.-G.; Chen, J.-J.; Wang, J.-H.; Zhu, Y.-F.: Comparative study of construction methods for deep excavations above shield tunnels. Tunn. Undergr. Space Technol. 71, 329–339 (2018). https://doi.org/10.1016/j.tust.2017.09.014

    Article  Google Scholar 

  3. Liu, X.-X.; Shen, S.-L.; Xu, Y.-S.; Yin, Z.-Y.: Analytical approach for time-dependent groundwater inflow into shield tunnel face in confined aquifer. Int. J. Numer. Anal. Meth. Geomech. 42, 655–673 (2018). https://doi.org/10.1002/nag.2760

    Article  Google Scholar 

  4. Peng, J.; Peng, F.-L.: A GIS-based evaluation method of underground space resources for urban spatial planning: part 1 methodology. Tunn. Undergr. Space Technol. 74, 82–95 (2018). https://doi.org/10.1016/j.tust.2018.01.002

    Article  Google Scholar 

  5. Qiao, Y.-K.; Peng, F.-L.; Wang, Y.: Monetary valuation of urban underground space: a critical issue for the decision-making of urban underground space development. Land Use Policy 69, 12–24 (2017). https://doi.org/10.1016/j.landusepol.2017.08.037

    Article  Google Scholar 

  6. Tan, Y.; Lu, Y.: Forensic diagnosis of a leaking accident during excavation. J. Perform. Constr. Facil. 31, 04017061 (2017). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001058

    Article  Google Scholar 

  7. Tan, Y.; Lu, Y.: Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai Soft Ground. J. Pipeline Syst. Eng. Pract. 9, 05018002 (2018). https://doi.org/10.1061/(ASCE)PS.1949-1204.0000310

    Article  Google Scholar 

  8. Xie, X.; Zhao, M.; Shahrour, I.: Face stability model for rectangular large excavations reinforced by pipe roofing. Tunn. Undergr. Space Technol. 94, 103132 (2019). https://doi.org/10.1016/j.tust.2019.103132

    Article  Google Scholar 

  9. Hong, Z.; Hu, X.; Fang, T.: Fang, analytical solution to steady-state temperature field of Freeze-Sealing Pipe Roof applied to Gongbei tunnel considering operation of limiting tubes. Tunn. Undergr. Space Technol. 105, 103571 (2020). https://doi.org/10.1016/j.tust.2020.103571

    Article  Google Scholar 

  10. Hu, X.; Fang, T.; Chen, J.; Ren, H.; Guo, W.: A large-scale physical model test on frozen status in freeze-sealing pipe roof method for tunnel construction. Tunn. Undergr. Space Technol. 72, 55–63 (2018). https://doi.org/10.1016/j.tust.2017.10.004

    Article  Google Scholar 

  11. Hu, X.; Hong, Z.; Fang, T.: Analytical solution to steady-state temperature field with typical freezing tube layout employed in freeze-sealing pipe roof method. Tunn. Undergr. Space Technol. 79, 336–345 (2018). https://doi.org/10.1016/j.tust.2018.06.014

    Article  Google Scholar 

  12. Liu, J.; Ma, B.; Cheng, Y.: Design of the Gongbei tunnel using a very large cross-section pipe-roof and soil freezing method. Tunn. Undergr. Space Technol. 72, 28–40 (2018). https://doi.org/10.1016/j.tust.2017.11.012

    Article  Google Scholar 

  13. Zhang, P.; Ma, B.; Zeng, C.; Xie, H.; Li, X.; Wang, D.: Key techniques for the largest curved pipe jacking roof to date: a case study of Gongbei tunnel. Tunn. Undergr. Space Technol. 59, 134–145 (2016). https://doi.org/10.1016/j.tust.2016.07.001

    Article  Google Scholar 

  14. Yang, S.; Wang, M.; Du, J.; Guo, Y.; Geng, Y.; Li, T.: Research of jacking force of densely arranged pipe jacks process in pipe-roof pre-construction method. Tunn. Undergr. Space Technol. 97, 103277 (2020). https://doi.org/10.1016/j.tust.2019.103277

    Article  Google Scholar 

  15. Abuhajar, O.; El Naggar, H.; Newson, T.: Experimental and numerical investigations of the effect of buried box culverts on earthquake excitation. Soil Dyn. Earthq. Eng. 79, 130–148 (2015). https://doi.org/10.1016/j.soildyn.2015.07.015

    Article  Google Scholar 

  16. Syachrani, S.; Jeong, H.S.; Rai, V.; Chae, M.J.; Iseley, T.: A risk management approach to safety assessment of trenchless technologies for culvert rehabilitation. Tunn. Undergr. Space Technol. 25, 681–688 (2010). https://doi.org/10.1016/j.tust.2010.05.005

    Article  Google Scholar 

  17. Yang, G.; Wang, G.; Lu, W.; Zhao, X.; Yan, P.; Chen, M.: Numerical modeling of surface explosion effects on shallow-buried box culvert behavior during the water diversion. Thin Wall. Struct. 133, 153–168 (2018). https://doi.org/10.1016/j.tws.2018.09.039

    Article  Google Scholar 

  18. Kheradi, H.; Ye, B.; Nishi, H.; Oka, R.; Zhang, F.: Optimum pattern of ground improvement for enhancing seismic resistance of existing box culvert buried in soft ground. Tunn. Undergr. Space Technol. 69, 187–202 (2017). https://doi.org/10.1016/j.tust.2017.06.022

    Article  Google Scholar 

  19. Chen, X.; Ma, B.; Najafi, M.; Zhang, P.: Long rectangular box jacking project: a case study. Undergr. Space 6, 101–125 (2021). https://doi.org/10.1016/j.undsp.2019.08.003

    Article  Google Scholar 

  20. Zhang, J.; Yan, C.; Ye, L.; Wang, A.; Zhao, Z.; Feng, J.: Analysis of mechanical effect of box culvert jacking on bottom pipe curtain. Tunn. Constr. 39, 73–79 (2019). https://doi.org/10.3973/j.issn.2096-4498.2019.S1.011

    Article  Google Scholar 

  21. Xiao, S.; Li, X.; Xia, C.; Shen, G.; Ge, J.: Study on the behavior of the upper pipe - curtain during the advance of a box culvert within pipe—curtains by a model test. Mod Tunn Technol 1, 22–27 (2006). https://doi.org/10.3969/j.issn.1009-6582.2006.01.004

    Article  Google Scholar 

  22. Xiao, S.; Xia, C.; Zhu, H.; Li, X.; Liu, X.: Vertical deformation prediction on upper pipe-roof during a box culvert being pushed within a pipe-roof. Chin. J. Rock Mech. Eng. 09, 1887–1892 (2006). https://doi.org/10.3321/j.issn:1000-6915.2006.09.023

    Article  Google Scholar 

  23. Wan, M.; Bai, Y.; Chen, W.: A study on the front earth pressure during box culvert jacking within pipe-roof. Chin. Civ. Eng. J. 06, 59–63 (2007). https://doi.org/10.3321/j.issn:1000-131X.2007.06.010

    Article  Google Scholar 

  24. Zhu, Z.; Zhang, H.; Yi, H.: Stochastic theory for predicting longitudinal settlement in soft-soil tunnel. Rock Soil Mech 01, 56–59 (2001). https://doi.org/10.3969/j.issn.1000-7598.2001.01.013

    Article  Google Scholar 

  25. Liu, B.; Zhang, J.: Stochastic method for ground subsidence due to near surface excavation. Chin. J. Rock Mech. Eng. 04, 289–296 (1995)

    Google Scholar 

  26. Jiang, Y.; Wang, M.; Zhang, Y.; Yu, L.; Jiang, F.; Xiao, Z.: Prediction method for surface settlement in tunnel construction with pipe curtain support. Mod Tunn Technol 57, 82–90 (2020). https://doi.org/10.13807/j.cnki.mtt.2020.04.011

    Article  Google Scholar 

  27. Li, Y.; Zhang, K.; Huang, C.; Li, Z.; Deng, M.: Analysis of surface subsidence of tunnel built by pipe-roof pre-construction method. Rock Soil Mech 32, 3701–3707 (2011). https://doi.org/10.3969/j.issn.1000-7598.2011.12.027

    Article  Google Scholar 

  28. Yamakawa, S.; Goto, Y.: Analysis of load distribution by joint in pipe beam roof. Proc. Jpn. Soc. Civ. Eng. (1980). https://doi.org/10.2208/jscej1969.1980.301_1

    Article  Google Scholar 

  29. Li, S.; Yan, Q.; Xie, C.; Wu, J.: The mechanical behavior of composite supports of steel-grid in loess tunnel. Chin. J. Rock Mech. Eng. 36, 446–456 (2017). https://doi.org/10.13722/j.cnki.jrme.2016.0599

    Article  Google Scholar 

  30. Long, Y.: Calculation of elastic foundation beam. Peoples Education Press, Beijing (1981)

    Google Scholar 

  31. Zhu, Y.; Feng, Z.; Cheng, N.: Analytic solutions of elastic foundation plate on Winkler viscoelastic foundation. Struct. Environ. Eng. 02, 42–50 (2011). https://doi.org/10.3969/j.issn.1006-3919.2001.02.006

    Article  Google Scholar 

  32. Xu, Q.; Jing, R.; Tang, G.; Gao, F.: Unified solution method on rectangular plate bending with four edges supported (Discussion on Unification of the Navier Solution and Levy Solutions). Eng. Mech. 3, 90–99 (1999)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the High Speed Railway and Natural Science United Foundation of China (U1934213) and the General Program of the National Natural Science Foundation of China (51878572). We are also very grateful for the on-site data and information provided by Nanchang Urban Planning & Design Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Zhang, H., Zhang, G. et al. The Prediction of Ground Settlement of a Box Culvert Jacked Under the Action of an Ultra-Shallow Buried Pipe Curtain. Arab J Sci Eng 47, 12423–12438 (2022). https://doi.org/10.1007/s13369-021-06417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06417-6

Keywords

Navigation