Skip to main content
Log in

Deformation Properties of Nano-Silica Modified Concrete Mixtures under Uniaxial Compression Loading

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The enhancement that nano-silica (NS) constitutes in the microstructure of concrete would affect its deformation behavior. In this work, the pre-peak and post-peak stress–strain diagram characteristics of concrete mixtures with NS (1.5% of cement by wt.) under uniaxial compression were investigated. The results were compared with the mixtures containing micro-silica (MS) (7.3% of cement by wt.). Aggregate characteristics in the range of 16 to 22 mm, as another variable, were also changed by utilizing river gravel (RG II) or crushed sandstone (CS II). Compared to reference concrete, the addition of NS did not improve the compressive strength and modulus of elasticity significantly. However, the addition of only 1.5% NS significantly affected the stress–strain diagram characteristics, such as discontinuity and critical stress limits before the peak load. Relative to the mixtures containing MS, the effect of NS on the pre-peak region was more significant. For example, when the mixtures containing RG II as coarse aggregate are considered, with respect to reference mixture, the increase in normalized discontinuity stress limits at 28 days was found as 52% and 26%, respectively, for the mixtures containing NS and MS. However, in the same order, the increase in 28-day compressive strength was just 8.1% and 5.2%. Post-peak behavior of the mixtures also indicated that the fracture of concrete is more brittle when MS or NS is used. Among these, the effect of NS on the post-peak region was found to be more dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Safiuddin, M.; Gonzalez, M.; Cao, J.; Tighe, S.L.: State-of-the-art report on use of nano-materials in concrete. Int. J. Pavement Eng. 15, 940–949 (2014). https://doi.org/10.1080/10298436.2014.893327

    Article  Google Scholar 

  2. Xu, J.; Corr, D.J.; Shah, S.P.: Nanomechanical investigation of the effects of nanoSiO2 on C-S-H gel/cement grain interfaces. Cem. Concr. Compos. 61, 7–17 (2015). https://doi.org/10.1016/j.cemconcomp.2015.04.011

    Article  Google Scholar 

  3. Li, H.; Xiao, H.G.; Yuan, J.; Ou, J.: Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 35, 185–189 (2004). https://doi.org/10.1016/S1359-8368(03)00052-0

    Article  Google Scholar 

  4. Kawashima, S.; Hou, P.; Corr, D.J.; Shah, S.P.: Modification of cement-based materials with nanoparticles. Cem. Concr. Compos. 36, 8–15 (2013). https://doi.org/10.1016/j.cemconcomp.2012.06.012

    Article  Google Scholar 

  5. Du, H.; Du, S.; Liu, X.: Durability performances of concrete with nano-silica. Constr. Build. Mater. 73, 705–712 (2014). https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  6. Du, H.; Du, S.; Liu, X.: Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Constr. Build. Mater. 82, 114–122 (2015). https://doi.org/10.1016/j.conbuildmat.2015.02.026

    Article  Google Scholar 

  7. Amin, M.; Abu El-Hassan, K.: Effect of using different types of nano materials on mechanical properties of high strength concrete. Constr. Build. Mater. 80, 116–124 (2015). https://doi.org/10.1016/j.conbuildmat.2014.12.075

    Article  Google Scholar 

  8. Björnström, J.; Martinelli, A.; Matic, A.; Börjesson, L.; Panas, I.: Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem. Phys. Lett. 392, 242–248 (2004). https://doi.org/10.1016/j.cplett.2004.05.071

    Article  Google Scholar 

  9. Nazari, A.; Riahi, S.: The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Compos. Part B Eng. 42, 570–578 (2011). https://doi.org/10.1016/j.compositesb.2010.09.025

    Article  Google Scholar 

  10. Nazari, A.; Riahi, S.: Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Mater. Sci. Eng. A 527, 7663–7672 (2010). https://doi.org/10.1016/j.msea.2010.08.095

    Article  Google Scholar 

  11. Berra, M.; Carassiti, F.; Mangialardi, T.; Paolini, A.E.; Sebastiani, M.: Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr. Build. Mater. 35, 666–675 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.132

    Article  Google Scholar 

  12. Stefanidou, M.; Papayianni, I.: Influence of nano-SiO2 on the Portland cement pastes. Compos. Part B Eng. 43, 2706–2710 (2012). https://doi.org/10.1016/j.compositesb.2011.12.015

    Article  Google Scholar 

  13. Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C.: Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539–545 (2007). https://doi.org/10.1016/j.conbuildmat.2005.09.001

    Article  Google Scholar 

  14. Liu, M.; Zhou, Z.; Zhang, X.; Yang, X.; Cheng, X.: The synergistic effect of nano-silica with blast furnace slag in cement based materials. Constr. Build. Mater. 126, 624–631 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.078

    Article  Google Scholar 

  15. Jo, B.W.; Kim, C.H.; Lim, J.H.: Characteristics of cement mortar with nano-SiO2 particles. ACI Mater. J. 104, 404–407 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.020

    Article  Google Scholar 

  16. Zhang, M.H.; Islam, J.; Peethamparan, S.: Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cem. Concr. Compos. 34, 650–662 (2012). https://doi.org/10.1016/j.cemconcomp.2012.02.005

    Article  Google Scholar 

  17. Mukharjee, B.B.; Barai, S.V.: Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concrete. Comput. Chem. Eng. 71, 570–578 (2014). https://doi.org/10.1016/j.conbuildmat.2014.08.040

    Article  Google Scholar 

  18. Zhang, M.H.; Li, H.: Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 25, 608–616 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.032

    Article  Google Scholar 

  19. Sadeghi Nik, A.; Lotfi Omran, O.: Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Constr. Build. Mater. 44, 654–662 (2013). https://doi.org/10.1016/j.conbuildmat.2013.03.082

    Article  Google Scholar 

  20. Jalal, M.; Pouladkhan, A.; Harandi, O.F.; Jafari, D.: Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr. Build. Mater. 94, 90–104 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.001

    Article  Google Scholar 

  21. Durgun, M.Y.; Atahan, H.N.: Strength, elastic and microstructural properties of SCCs’ with colloidal nano silica addition. Constr. Build. Mater. 158, 295–307 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.041

    Article  Google Scholar 

  22. Durgun, M.Y.; Atahan, H.N.: Rheological and fresh properties of reduced fine content self-compacting concretes produced with different particle sizes of nano SiO2. Constr. Build. Mater. 142, 431–443 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.098

    Article  Google Scholar 

  23. Gesoglu, M.; Güneyisi, E.; Asaad, D.S.; Muhyaddin, G.F.: Properties of low binder ultra-high performance cementitious composites: comparison of nanosilica and microsilica. Constr. Build. Mater. 102, 706–713 (2016). https://doi.org/10.1016/j.conbuildmat.2015.11.020

    Article  Google Scholar 

  24. Janković, K.; Stanković, S.; Bojović, D.; Stojanović, M.; Antić, L.: The influence of nano-silica and barite aggregate on properties of ultra high performance concrete. Constr. Build. Mater. 126, 147–156 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.026

    Article  Google Scholar 

  25. Dilli, M.E.; Atahan, H.N.; Şengül, C.: A comparison of strength and elastic properties between conventional and lightweight structural concretes designed with expanded clay aggregates. Constr. Build. Mater. 101, 260–267 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.080

    Article  Google Scholar 

  26. Atmaca, N.; Abbas, M.L.; Atmaca, A.: Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete. Constr. Build. Mater. 147, 17–26 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.156

    Article  Google Scholar 

  27. Chithra, S.; Senthil Kumar, S.R.R.; Chinnaraju, K.: The effect of colloidal nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate. Constr. Build. Mater. 113, 794–804 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.119

    Article  Google Scholar 

  28. Li, L.G.; Zheng, J.Y.; Zhu, J.; Kwan, A.K.H.: Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect. Constr. Build. Mater. 168, 622–632 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.181

    Article  Google Scholar 

  29. Li, L.G.; Zheng, J.Y.; Ng, P.L.; Zhu, J.; Kwan, A.K.H.: Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. Constr. Build. Mater. 223, 965–975 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.241

    Article  Google Scholar 

  30. Hou, P.; Qian, J.; Cheng, X.; Shah, S.P.: Effects of the pozzolanic reactivity of nanoSiO2 on cement-based materials. Cem. Concr. Compos. 55, 250–258 (2015). https://doi.org/10.1016/j.cemconcomp.2014.09.014

    Article  Google Scholar 

  31. Zhu, J.; Feng, C.; Yin, H.; Zhang, Z.; Shah, S.P.: Effects of colloidal nanoBoehmite and nanoSiO2 on fly ash cement hydration. Constr. Build. Mater. 101, 246–251 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.038

    Article  Google Scholar 

  32. Hou, P.; Wang, K.; Qian, J.; Kawashima, S.; Kong, D.; Shah, S.P.: Effects of colloidal nanoSiO 2 on fly ash hydration. Cem. Concr. Compos. 34, 1095–1103 (2012). https://doi.org/10.1016/j.cemconcomp.2012.06.013

    Article  Google Scholar 

  33. Jalal, M.; Mansouri, E.; Sharifipour, M.; Pouladkhan, A.R.: Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater. Des. 34, 389–400 (2012). https://doi.org/10.1016/j.matdes.2011.08.037

    Article  Google Scholar 

  34. Madandoust, R.; Ranjbar, M.M.; Yasin Mousavi, S.: An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr. Build. Mater. 25, 3721–3731 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.018

    Article  Google Scholar 

  35. Nazari, A.; Riahi, S.: Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder. Energy Build. 43, 864–872 (2011). https://doi.org/10.1016/j.enbuild.2010.12.006

    Article  Google Scholar 

  36. Hou, P.K.; Kawashima, S.; Wang, K.J.; Corr, D.J.; Qian, J.S.; Shah, S.P.: Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar. Cem. Concr. Compos. 35, 12–22 (2013). https://doi.org/10.1016/j.cemconcomp.2012.08.027

    Article  Google Scholar 

  37. Palla, R.; Karade, S.R.; Mishra, G.; Sharma, U.; Singh, L.P.: High strength sustainable concrete using silica nanoparticles. Constr. Build. Mater. 138, 285–295 (2017). https://doi.org/10.1016/j.conbuildmat.2017.01.129

    Article  Google Scholar 

  38. Kong, D.; Du, X.; Wei, S.; Zhang, H.; Yang, Y.; Shah, S.P.: Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715 (2012). https://doi.org/10.1016/j.conbuildmat.2012.08.006

    Article  Google Scholar 

  39. Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35, 1943–1947 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  40. ASTM C469: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM Int., pp. 1–5 (2014). https://doi.org/10.1520/C0469

  41. Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y.: Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838–844 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.044

    Article  Google Scholar 

  42. Khaloo, A.; Mobini, M.H.; Hosseini, P.: Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 113, 188–201 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ravago Chemicals Turkey Company for providing colloidal nano-silica samples. Funding: No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Nuri Turkmenoglu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material

Some or all data used are available from the corresponding author by request (load–deformation (axial and lateral) data).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkmenoglu, H.N., Atahan, H.N. Deformation Properties of Nano-Silica Modified Concrete Mixtures under Uniaxial Compression Loading. Arab J Sci Eng 46, 11009–11025 (2021). https://doi.org/10.1007/s13369-021-05431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05431-y

Keywords

Navigation