Skip to main content
Log in

Multi-Objective Optimization of Alkali Activator Agents for FA- and GGBFS-Based Geopolymer Lightweight Mortars

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article presents the effect of different sodium hydroxide (NaOH) concentrations and sodium silicate-to-sodium hydroxide (\(\text {Na}_{2}\text {SiO}_{3}\)/NaOH) ratio on the fresh and some hardened properties of lightweight geopolymer mortar (LWGM). The main components of LWGM are lightweight pumice aggregate, crushed limestone aggregate, and alkali-activated FA or GGBFS. Effectiveness of aforementioned parameters was tested in terms of variation of the workability, fresh unit weight, absorption and strength of LWGM. The curing parameters were taken from a previous study conducted by the authors. The alkaline activator is a mix of 8, 10, 12 and 14 molar (M) of NaOH solution and \(\text {Na}_{2}\text {SiO}_{3}\) with the following ratios 1:0.5, 1:1, 1:1.5, 1:2 and 1:2.5. The ratio of alkaline solution to binder was taken as 0.50. Full factorial experimental program was adopted to observe strength development, water absorption and sorptivity of LWGM. Therefore, 256 data samples were obtained for strength and absorption properties. Optimum alkaline agent ratios and NaOH molarity were obtained from analysis of the experimental data using response surface method. Test results indicate that the increment in the \(\text {Na}_{2}\text {SiO}_{3}\)/NaOH ratio up to an optimum value increases the strength and decreases water absorption of LWGM. The increment in NaOH concentration from 8 to 14 M increases the strength and decreases the workability and water absorption of LWGM. The strength of GGBFS-based LWGM with different NaOH concentrations and \(\text {Na}_{2}\text {SiO}_{3}\)/NaOH ratio is greater than that of FA-based GPLWM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidovits, J.: Global warming impact on the cement and aggregate industries. World Resour. Rev. 6(2), 263–278 (1995)

    Google Scholar 

  2. Fernandez-Jimenez, A.; Palomo, A.: Engineering properties of alkali-activated fly ash concrete. ACI Mater. J. 103(2), 106–12 (2006)

    Google Scholar 

  3. Sindhunata,; Van deventer, J.; Llukey, G.; Xu, H.: Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Ind. Eng. Chem. Res. 45, 3559–3568 (2006)

    Article  Google Scholar 

  4. Davidovits, J.: High-Alkali Cements for 21st Century Concretes. Special Publication, vol. 144, pp. 383–398. ACI Special Publication, Farmington Hills (1994)

    Google Scholar 

  5. Bakharev, T.; Sanjayan, J.; Cheng, Y.: Alkali activation of Australian slag cements. Cem. Concr. Res. 29, 113–20 (1999)

    Article  Google Scholar 

  6. Nath, P.; Sarker, P.: Geopolymer concrete for ambient curing condition. In: Proceedings of the Australasian Structural Engineering Conference, Perth, Australia, 11–13 July 2012.

  7. Wongpa, J.; Kiattikomol, K.; Jaturapitakkul, C.; Chindaprasirt, P.: Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 31, 4748–54 (2010)

    Article  Google Scholar 

  8. Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.: Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem. Concr. Res. 31, 331–4 (2001)

    Article  Google Scholar 

  9. Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.: Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 31(12), 77–83 (2001)

    Google Scholar 

  10. Davidovits, J.: Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 37, 1633–56 (1991)

    Article  Google Scholar 

  11. Kourti, I.; Amutha Rani, D.; Boccaccini, A.; Cheeseman, C.: Geopolymers from DC plasma-treated air pollution control residues, metakaolin, and granulated blast furnace slag. J. Mater. Civ. Eng. 23(6), 735–40 (2010)

    Article  Google Scholar 

  12. Davidovits, J.: Geopolymer Chemistry and Applications, 3rd edn. Institute Geopolymer, Saint Quentin (2011)

    Google Scholar 

  13. Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–97 (2005)

    Article  Google Scholar 

  14. Yip, C.; Van Deventer, J.: Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 38(18), 3851–60 (2003)

    Article  Google Scholar 

  15. Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H.: Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–43 (2011)

    Article  Google Scholar 

  16. Lloyd, N.; Rangan, B.: Geopolymer concrete with fly ash. In: Second International Conference on Sustainable, Construction Materials and Technologies, pp. 1493–504 (2010)

  17. Komnitsas, K.; Zaharaki, D.: Geopolymerisation: a review and prospects for the minerals industry. Miner. Eng. 20(14), 1261–77 (2007)

    Article  Google Scholar 

  18. Tempest, B.; Sanusi, O.; Gergely, J.; Ogunro, V.; Weggel, D.: Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. In: Proceedings of the 2009 World of Coal Ash (WOCA) Conference Lexington, KY (2009)

  19. Singh, P.S.; Trigg, M.; Burgar, I.; Bastow, T.: Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Mater. Sci. Eng. 396(1–2), 392–402 (2005)

    Article  Google Scholar 

  20. Kumar, S.; Kumar, R.; Mehrotra, S.P.: Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 45(3), 607–615 (2010)

    Article  Google Scholar 

  21. Rashad, A.M.: Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 10(1), 57–64 (2013)

    MathSciNet  Google Scholar 

  22. Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; van Deventer, J.S.: Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 45, 125–135 (2014)

    Article  Google Scholar 

  23. Garcia-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.: Hydration kinetics in hybrid binders: early reaction stages. Cem. Concr. Compos. 39, 82–92 (2013)

    Article  Google Scholar 

  24. van Jaarsveld, J.; van Deventer, J.: The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29(8), 1189–1200 (1999)

    Article  Google Scholar 

  25. Ismail, I.; Bernal, S.A.; Provis, J.; San Nicolas, R.; Brice, D.G.; Kilcullen, A.R.; van Deventer, J.S.: Influence of fly ash on the water and chloride permeability of alkali activated slag mortars and concretes. Constr. Build. Mater. 48, 1187–1201 (2013)

    Article  Google Scholar 

  26. Parthiban, K.; Saravanarajamohan, K.; Shobana, S.; Bhaskar, A.A.: Effect of replacement of slag on the mechanical properties of fly ash based geopolymer concrete. Int. J. Eng. Technol. 5(3), 2555–2559 (2013)

    Google Scholar 

  27. De Vargas, A.S.; Dal Molin, D.C.C.; Vilela, A.C.F.; Da Silva, F.J.; Pavao, B.; Veit, H.: The effects of \(\text{Na}_{2}\text{O/SiO}_{3}\) molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem. Concr. Compos. 33, 653–60 (2011)

    Article  Google Scholar 

  28. Hu, M.; Zhu, X.; Long, F.: Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cem. Concr. Compos. 31(10), 762–8 (2009)

    Article  Google Scholar 

  29. Bakharev, T.: Geopolymeric materials prepared using Class F fly ash elevated temperature curing. Cem. Concr. Res. 35, 1224–32 (2005)

    Article  Google Scholar 

  30. Atis, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E.: Very high strength (120 MPa) Class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr Build. Mater. 96, 673–678 (2015)

    Article  Google Scholar 

  31. Palomo, A.; Grutzeck, M.W.; Blanco, M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29(8), 1323–9 (1999)

    Article  Google Scholar 

  32. Hardjito, D.; Rangan, B.V.: Development and properties of low-calcium fly ash based geopolymer concrete. Faculty of Engineering Curtin University of Technology, Perth (2005)

  33. Wang, H.; Li, H.; Yan, F.: Synthesis and mechanical properties of metakaolinite based geopolymer. Colloids Surf. A 268(1–3), 1–6 (2005)

    Google Scholar 

  34. Al Bakri Mustafa, A.M.; Kamarudin, H.; Bnhussain, M.; Nizar, I.K.; Rafiza, A.R.; Zarina, Y.: The processing, characterization, and properties of fly ash based geopolymer concrete. Rev. Adv. Mater. Sci. 30, 90–97 (2012)

    Google Scholar 

  35. Morsy, M.S.; Alsaye, S.H.; Al-Salloum, Y.; Almusallam, T.: Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab. J. Sci. Eng. 39(6), 4333–4339 (2014)

    Article  Google Scholar 

  36. Abdulkareem, O.A.; Al-Bakri, A.M.M.; Kamarudin, H.; Nizar, I.K.; Saif, A.A.: Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 50, 377–387 (2014)

    Article  Google Scholar 

  37. Yang, K.H.; Song, J.K.; Lee, J.S.: Properties of alkali-activated mortar and concrete using lightweight aggregates. J. Mater. Struct. 43, 403–16 (2010)

    Article  Google Scholar 

  38. Mermerdaş, K.; Alğın, Z.; Oleiwi, S.M.; Nassani, D.E.: Optimization of lightweight GGBFS and FA geopolymer mortars by response surface method. Constr. Build. Mater. 139, 159–171 (2017)

    Article  Google Scholar 

  39. ASTM C618: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials, West Conshohocken (2003)

  40. Ghosh, Kushal; Ghosh, Partha: Effect Of \(\text{Na}_{2}\text{O/Al}_{2}\text{O}_{3}\), \(\text{SiO}_{2}\text{/Al}_{2}\text{O}_{3}\) And W/B ratio on setting time and workability of flyash based geopolymer. Int. J. Eng. Res. Appl. (IJERA) 2(4), 2142–2147 (2012)

    Google Scholar 

  41. Liew, Y.M.; Kamarudin, H.; Al Bakri, A.M.; Binhussain, M.; Luqman, M.; Nizar, I.K.; et al.: Influence of solids-to-liquid and activator ratios on calcined kaolin cement powder. Phys. Proc. 22, 312–317 (2011)

    Article  Google Scholar 

  42. Ariffin, N.F.; Hussin, M.W.; Sam, A.R.M.; Bhutta, M.A.R.; Khalid, N.H.; Mirza, A.J.: Strength properties and molecular composition of epoxy-modified mortars. Constr. Build. Mater. 94, 315–322 (2015)

    Article  Google Scholar 

  43. Panias, D.; Giannopoulou, I.P.; Perraki, T.: Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 301, 246–254 (2007)

    Article  Google Scholar 

  44. Temuujin, J.; Williams, R.P.; van Riessen, A.: Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process. Technol. 209, 5276–5280 (2009)

    Article  Google Scholar 

  45. Rattanasak, U.; Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22(12), 1073–1078 (2009)

    Article  Google Scholar 

  46. Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42, 729–746 (2007)

    Article  Google Scholar 

  47. Lee, W.K.; van Deventer, J.S.J.: The effects of inorganic salt contamination on the strength and durability of geopolymer. Colloids Surf. A Physicochem. Eng. Asp. 211(2–3), 115–126 (2002)

    Article  Google Scholar 

  48. Villa, C.; Pecina, E.T.; Torres, R.; Gomez, L.: Geopolymer synthesis using alkaline activation of natural zeolite. Constr. Build. Mater. 24(11), 2084–90 (2010)

    Article  Google Scholar 

  49. Jaarsveld, J.G.S.; Deventer, J.S.J.; Lukey, G.C.: The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymer. Chem. Eng. J. 89(1—-3), 63–73 (2002)

    Article  Google Scholar 

  50. Thokchom, S.; Ghosh, P.; Ghosh, S.: Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. J. Eng. Appl. Sci. 4(7), 28–32 (2009)

    Google Scholar 

  51. Whitcomb, P.J.; Anderson, M.J.: RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. Taylor & Francis, New York (2004)

    Book  Google Scholar 

  52. Pradeep, G.: Response Surface Method. VDM Verlag Publishing, Saarbrücken (2008)

    Google Scholar 

  53. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  54. Algin, H.M.: Optimised design of jet-grouted raft using response surface method. Comput. Geotech. 74, 56–73 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasım Mermerdaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oleiwi, S.M., Algın, Z., Nassani, D.E. et al. Multi-Objective Optimization of Alkali Activator Agents for FA- and GGBFS-Based Geopolymer Lightweight Mortars. Arab J Sci Eng 43, 5333–5347 (2018). https://doi.org/10.1007/s13369-018-3170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3170-x

Keywords

Navigation