Skip to main content
Log in

Solutions with Wright Function for Time Fractional Free Convection Flow of Casson Fluid

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A fractional model of Casson fluid coupled with energy equation is developed. Casson fluid in the presence of heat transfer is considered over an oscillating vertical plate with constant wall temperature. Definition of fractional Caputo derivative is used in the mathematical formulation of the problem. Exact solutions via Laplace transform are obtained and presented in terms of Wright function. Parametric studies were undertaken, and the obtained solutions are illustrated through plots for various physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u :

Dimensional velocity

t :

Dimensional time

x :

Coordinate axis parallel to the plate

y :

Coordinate axis normal to the plate

g :

Acceleration due to gravity

k :

Thermal conductivity of the fluid

\(\tau \) :

Dimensionless time

\(\alpha \) :

Fractional parameter

f :

Amplitude of the plate oscillations

\(c_\mathrm{p} \) :

Specific heat at constant pressure

T :

Temperature of the fluid

\(T_\infty \) :

Ambient temperature

\(T_\mathrm{w} \) :

Wall temperature

Pr :

Prandtl number

v :

Dimensionless velocity

\(\xi \) :

Dimensionless coordinate axis normal to the plate

s :

Laplace transform parameter

H(t):

Unit step function

\(\omega \) :

Frequency of the plate oscillation

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density of the fluid

\(\nu \) :

Kinematic viscosity

\(\mu \) :

Viscosity

\(\beta \) :

Casson fluid parameter

\(\beta _\mathrm{T}\) :

Coefficient of thermal expansion

\(C_\mathrm{f}\) :

Skin friction

Nu :

Nusselt number

References

  1. Leibniz, G.W.: Letter from Hanover, Germany, September 30, 1695 to GA L’Hospital. J Leibnizen Mathematische Schriften, vol. 2, pp. 301–302 (1849)

  2. Axtell, M.; Bise, M.E.: Fractional calculus application in control systems. In: Aerospace and Electronics Conference. 1990. NAECON 1990, Proceedings of the IEEE 1990 National, pp. 563–566 (1990).

  3. Oldham, K.; Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  4. Samko, S.; Kilbas, A.; Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Philadelphia (1993)

    MATH  Google Scholar 

  5. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Magin, Richard L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  7. Rossikhin, Y.A.; Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  8. Carpinteri, A.; Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer, New York (2014)

    MATH  Google Scholar 

  9. Machado, J.T.; Kiryakova, V.; Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman & Co, San Francisco (1982)

    MATH  Google Scholar 

  11. Petras, I.: Fractional-Order Nonlinear Systems: Modeling Analysis and Simulation. Springer, New York (2011)

    Book  MATH  Google Scholar 

  12. Bagley, R.L.; Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1978)

    Article  MATH  Google Scholar 

  13. Momani, S.; Shawagfeh, N.: Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 182, 1083–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Momani, S.; Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182, 754–760 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daftardar-Gejji, V.; Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition. Appl. Math. Comput. 189, 541–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ray, S.S.; Chaudhuri, K.S.; Bera, R.K.: Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method. Appl. Math. Comput. 182, 544–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, Q.: Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput. 182, 1048–1055 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Momani, S.; Odibat, Z.: Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355, 271–279 (2006)

    Article  MATH  Google Scholar 

  20. Odibat, Z.M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 27–34 (2006)

    Article  MathSciNet  Google Scholar 

  21. Momani, S.; Odibat, Z.: Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 365, 345–350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sweilam, N.H.; Khader, M.M.; Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 371, 26–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Odibat, Z.; Momani, S.: Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 36, 167–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qi, H.; Jin, H.: Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders. Acta Mech. Sin. 22, 301–305 (2006)

  25. Wenchang, T.; Wenxiao, P.; Mingyu, X.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech. 38(5), 645–650 (2003)

  26. Shah, N.A.; Vieru, D.; Fetecau, C.: Effects of the fractional order and magnetic field on the blood flow in cylindrical domains. J. Magn. Magn. Mater. 409, 10–19 (2016)

    Article  Google Scholar 

  27. Liu, F.; Anh, V.; Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Churchill, R.V.: Operational Mathematics. McGraw-Hill College, New York (1971)

    MATH  Google Scholar 

  30. Wright, E.M.: The generalized Bessel function of order greater than one. Q. J. Math. 1, 36–48 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wright, E.M.: On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1, 304–309 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  32. Casson, N.: A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. Pergamon Press, Oxford (1959)

    Google Scholar 

  33. Dash, R.K.; Mehta, K.N.; Jayaraman, G.: Casson fluid flow in a pipe filled with a homogeneous porous medium. Int. J. Eng. Sci. 34, 1145–1156 (1996)

    Article  MATH  Google Scholar 

  34. Pramanik, S.: Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng. J. 5, 205–212 (2014)

    Article  Google Scholar 

  35. Fung, Y.C.: Biodynamics: Circulation. Springer, New York (2013)

    Google Scholar 

  36. Khalid, A.; Khan, I.; Khan, A.; Shafie, S.: Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 18, 309–317 (2015)

    Article  MATH  Google Scholar 

  37. Khan, I.; Shah, N.A.; Vieru, D.: Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate. Eur. Phys. J. Plus 131, 1–12 (2016)

    Article  Google Scholar 

  38. El-Shahed, M.; Salem, A.: An extension of wright function and its properties. J. Math. 2015, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Sheikh, N.A., Khan, I. et al. Solutions with Wright Function for Time Fractional Free Convection Flow of Casson Fluid. Arab J Sci Eng 42, 2565–2572 (2017). https://doi.org/10.1007/s13369-017-2521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2521-3

Keywords

Navigation