Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders

  • Review
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Although antiretroviral therapy (ART) affects virologic suppression and prolongs life expectancies among HIV-positive patients; HIV-1-associated neurocognitive disorders (HAND) continue to be diagnosed in patients with HIV-1 undergoing treatment. The extensive clinical manifestations of HAND include behavioral, cognitive, and motor dysfunctions that severely affect the patients’ quality of life. The pathogenesis of HAND has received increasing attention as a potential avenue by which to improve the treatment of the condition. Many studies have shown that endoplasmic reticulum (ER) stress, autophagy, and their interaction play important roles in the onset and development of neurodegenerative diseases. While the accumulation of misfolded proteins can induce ER stress, autophagy can effectively remove accumulated toxic proteins, reduce ER stress, and thus inhibit the development of neuropathy. Through the in-depth study of ER stress and autophagy, both have been recognized as promising targets for pharmacotherapeutic intervention in the treatment of HAND. This review will highlight the effects of ER stress, autophagy, and their interaction in the context of HAND, thereby helping to inform the future development of targeted treatments for patients with HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas W, Khan KA, Tripathy MK, Dichamp I, Keita M, Rohr O et al (2012) Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein. Cell Death Dis 3(4)

  • Adolph TE, Tomczak MF, Niederreiter N, Ko HJ, Böck J, Martinez-Naves E et al (2013) Paneth cells as a site of origin for intestinal inflammation. Nature 503(7475):272–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akay C, Lindl KA, Shyam N, Nabet B, Geonaga-Vazquez Y, Ruzbarsky J, Wang Y, Kolson DL, Jordan-Sciutto KL (2012) Activation status of integrated stress response pathways in neurones and astrocytes of HIV-associated neurocognitive disorders (HAND). Neuropathol Appl Neurobiol 38(2):175–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alirezaei M, Kiosses WB, Fox HS (2008a) Decreased neuronal autophagy in HIV dementia. Autophagy

  • Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS (2008b) Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One 3(8)

  • Anderson ER, Zink WE, Xiong H, Gendelman HE (2002) HIV-1-associated dementia: a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes. J Acquir Immune Defic Syndr 31:43–54

    Google Scholar 

  • András IE, Toborek MJIL (2013) Amyloid beta accumulation in HIV-1-infected brain: the role of the blood brain barrier. IUBMB Life 65(1):43–49

    PubMed  Google Scholar 

  • Bahr BA, Bendiske J (2002) The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83(3):481–489

    CAS  PubMed  Google Scholar 

  • Bednarczyk M, Zmarzly N, Grabarek B, Mazurek U, Mucwierzgon M (2018) Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget 9(76):34413–34428

    PubMed  PubMed Central  Google Scholar 

  • Cai Y, Arikkath J, Yang L, Guo M-L, Periyasamy P, Buch SJA (2016) Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy 12(2):225–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer\’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta 1852(8):1665–1675

    CAS  PubMed  Google Scholar 

  • Castrogonzalez S, Shi Y, Colomerlluch M, Song Y, Mowery K, Almodovar S et al (2020) HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy:1–25

  • Churchill MJ, Deeks SG, Margolis DM, Siliciano RF, Swanstrom R (2016) HIV reservoirs: what, where and how to target them. Nat Rev Microbiol 14(1):55–60

    CAS  PubMed  Google Scholar 

  • Conway O, Akpinar HA, Rogov VV, Kirkin V (2019) Selective autophagy receptors in neuronal health and disease. J Mol Biol

  • Cornejo VCH, Hetz C (2013) The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 35(3):277–292

    CAS  PubMed  Google Scholar 

  • Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy. PLoS One (2):5

  • Dandekar A, Mendez R, Zhang K (2015) Cross talk between ER stress, oxidative stress, and Inflammation in health and disease. Methods Mol Biol 1292:205–214

    CAS  PubMed  Google Scholar 

  • Deegan S, Koryga I, Glynn S, Gupta S, Gorman A, Samali A (2014) A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy. Biochem Biophys Res Commun 456

  • Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27(7):491–504

    CAS  PubMed  Google Scholar 

  • Díaz-Hung M-L, Martínez G, Hetz C (2020) Chapter two - emerging roles of the unfolded protein response (UPR) in the nervous system: a link with adaptive behavior to environmental stress? In: Kepp O, Galluzzi L (eds) International Review of Cell and Molecular Biology. Academic Press, pp 29–61

  • Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC (2019) Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol

  • Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein D (2020) Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol 432(8):2799–2821

    CAS  PubMed  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669

    CAS  PubMed  Google Scholar 

  • Fan Y, He JJ (2016) HIV-1 tat induces unfolded protein response and endoplasmic reticulum stress in astrocytes and causes neurotoxicity through glial Fibrillary acidic protein (GFAP) activation and aggregation. J Biol Chem 291(43):22819–22829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fields J, Dumaop W, Elueteri S, Campos S, Serger E, Trejo M, Kosberg K, Adame A, Spencer B, Rockenstein E, He JJ, Masliah E (2015) HIV-1 tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci 35(5):1921–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JL, Garcia JV (2008) HIV-1 Nef: at the crossroads. Retrovirology 5(1):84–84

    PubMed  PubMed Central  Google Scholar 

  • Galleguillos D, Matus S, Valenzuela V, Valdés P, Martinez A, Nassif M, et al. (2009) Targeting endoplasmic reticulum stress pathways to treat neurological disorders associated with protein misfolding. Protein Misfolding Disorders: A Trip into the ER

  • González-Scarano F, Martín-García J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5(1):69–81

    PubMed  Google Scholar 

  • Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11(7):995–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    CAS  PubMed  Google Scholar 

  • Hetz CA, Medicine CSJCM (2006) Emerging roles of the unfolded protein response signaling in physiology and disease. Curr Mol Med 6(1):1–3

    CAS  PubMed  Google Scholar 

  • Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582

    PubMed  Google Scholar 

  • Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J, Power C (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27(14):3703–3711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanmogne GD, Schall K, Leibhart J, Knipe B, Gendelman HE, Persidsky Y (2006) HIV-1 gp120 compromises blood–brain barrier integrity and enhance monocyte migration across blood–brain barrier: implication for viral neuropathogenesis. J Cereb Blood Flow Metab 27(1):123–134

    PubMed  Google Scholar 

  • Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD, White E (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4(8):914–927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik S, Cuervo AMJNM (2015) Proteostasis and aging. Nature 21(12):1406–1415

    CAS  Google Scholar 

  • Kim I, Xu W, Reed JCJNRDD (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

    CAS  PubMed  Google Scholar 

  • Kirchhoff F (2010) Immune evasion and counteraction of restriction factors by HIV-1 and other primate Lentiviruses. Cell Host Microbe 8(1):55–67

    CAS  PubMed  Google Scholar 

  • Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N (2017) Memantine for Alzheimer's disease: an updated systematic review and meta-analysis. J Alzheimers Dis 60(2):401–425

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J-I, Tanida I et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I (2007) ER stress (PERK|[sol]|eIF2|[alpha]| phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    CAS  PubMed  Google Scholar 

  • Kragh CL, Ubhi K, Wyss-Corey T, Masliah EJBP (2012) Autophagy in dementias. Brain Pathol 22(1):99–109

    CAS  PubMed  Google Scholar 

  • Kroemer G, Jäättelä M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5(11):886–897

    CAS  PubMed  Google Scholar 

  • Kumar YR, Soo-Wan C, Hyung-Ryong K, Chae HJ (2014) Endoplasmic reticulum stress and cancer. J Cancer Prevent 19(2):75–88

    Google Scholar 

  • Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol 186(2):255–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine BJC (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120(2):159–162

    CAS  PubMed  Google Scholar 

  • Li Y, Guo Y, Yu X, Duan W, Hong K et al (2015) Trehalose decreases mutant sod1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience

  • Ligon C, Cai Y, Buch S, Arikkath J (2020) A selective role for a component of the autophagy pathway in coupling the Golgi apparatus to dendrite polarity in pyramidal neurons. Neurosci Lett 730:135048

    CAS  PubMed  Google Scholar 

  • Lindholm D, Wootz H, Korhonen LJCD (2006) Differentiation. ER stress and neurodegenerative diseases. Cell Death Differ 13(3):385–392

    CAS  PubMed  Google Scholar 

  • Liu S, Xing Y, Wang J, Pan R, Li G, Tang H, Chen G, Yan L, Guo L, Jiang M, Gong Z, Lin L, Dong J (2019) The dual role of HIV-1 gp120 V3 loop-induced autophagy in the survival and apoptosis of the primary rat hippocampal neurons. Neurochem Res 44(7):1636–1652

    CAS  PubMed  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    CAS  PubMed  Google Scholar 

  • Matus S, Lisbona F, Torres M, Leon C, Thielen P, Hetz CJCMM (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in Neurodegeneration. Curr Mol Med 8(3):157–172

    CAS  PubMed  Google Scholar 

  • Meco AD, Curtis ME, Lauretti E, Pratico D (2019) Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatry

  • Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S (2019) The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 10(1):376–413

    PubMed  PubMed Central  Google Scholar 

  • Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16(6):345–357

    CAS  PubMed  Google Scholar 

  • Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and Neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93(5):1015–1034

    CAS  PubMed  Google Scholar 

  • Meulendyke KA, Croteau JD, Zink MC (2014) HIV life cycle, innate immunity and autophagy in the central nervous system. Curr Opin HIV AIDS 9(6):565–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Komatsu MJC (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    CAS  PubMed  Google Scholar 

  • Nah J, Yuan J, Jung Y (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cell 38(5):381–389

    CAS  Google Scholar 

  • Nakamura S, Yoshimori T (2017) New insights into autophagosome–lysosome fusion. J Cell Sci 130(7):1209–1216

    CAS  PubMed  Google Scholar 

  • Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM (2017) Role of autophagy in HIV infection and pathogenesis. J Intern Med 281(5):422–432

    CAS  PubMed  Google Scholar 

  • Nie T, Yang S, Ma H, Zhang L, Lu F, Tao K, Wang R, Yang R, Huang L, Mao Z, Yang Q (2016) Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis 7(12):e2563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norman JP, Perry SW, Reynolds HM, Michelle K, De MBKL, Margarita T et al (2008) HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One 3(11):e3731

    PubMed  PubMed Central  Google Scholar 

  • Ogata M, Hino SI, Saito A, Morikawa K, Molecular KIJ, Biology C (2007) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231

    Google Scholar 

  • Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith R, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    CAS  PubMed  Google Scholar 

  • Rawat P, Teodorofdiedrich C, Spector SA (2019) Human immunodeficiency virus type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 67(5):802–824

    PubMed  Google Scholar 

  • Rempel HC, Lynn PJA (2005) HIV-1 tat inhibits neprilysin and elevates amyloid beta. AIds 25(2):S460–S461

    Google Scholar 

  • Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. Aids 21(14):1915–1921

    PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    CAS  PubMed  Google Scholar 

  • Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJJLN (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118

    CAS  PubMed  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol Monophosphatase. J Cell Biol 170(7):1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert MJB (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain J Neurol 135(7):2169–2177

    Google Scholar 

  • Scheper W, Hoozemans JJM (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-κB pathway and can be silenced by gp120-specific siRNA. J Neuroinflammation 7(1):96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah A, Vaidya NK, Bhat HK, Kumar A (2016) HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway. Sci Rep 6:18929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281(20):14474–14485

    CAS  PubMed  Google Scholar 

  • Son JH, Shim JH, Kim KH, Ha JY, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44(2):89–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas I, Ron DJNCB (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahama M, Akira S, Saitoh T (2018) Autophagy limits activation of the inflammasomes. Immunol Rev 281(1):62–73

    CAS  PubMed  Google Scholar 

  • Tewari M, Monika, Varghese RK, Menon M, Seth P (2015) Astrocytes mediate HIV-1 tat-induced neuronal damage via ligand-gated ion channel P2X7R. J Neurochem 132(4):464–476

    CAS  PubMed  Google Scholar 

  • Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S (2020) Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. Int Rev Cell Mol Biol:350

  • Ton HT, Xiong H (2013) Astrocyte dysfunctions and HIV-1 neurotoxicity. J AIDS Clin Res 4(11):255–255

    PubMed  PubMed Central  Google Scholar 

  • Upton JP, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR, Oakes SA (2008) Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 28(12):3943–3951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallejo-Gracia A, Chen I, Perrone R, Besnard E, Boehm D, Battivelli E et al (2020) FOXO1 promotes HIV latency by suppressing ER stress in T cells. Nat Microbiol 5:1144–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron DJS (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    CAS  PubMed  Google Scholar 

  • Wang I, Tsai KJ, Shen CK (2015) Autophagy activators rescue and alleviate the pathogenesis of a FTLD-TDP model with TDP-43 Proteinopathies (S8.005)

  • Wang Y, Liu F, Wang Y, Guan R, Chen C, Li D et al (2018) Autophagic modulation by Trehalose reduces accumulation of TDP-43 in a cell model of amyotrophic lateral sclerosis via TFEB activation. Neurotox Res 34(1):109–120

    CAS  PubMed  Google Scholar 

  • Wong YC, Holzbaur ELF (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci 111(42):E4439–E4448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Dong H, Ye X, Zhong L, Cao T, Xu Q, Wang J, Zhang Y, Xu J, Wang W, Wei Q, Liu Y, Wang S, Shao Y, Xing H (2018) HIV-1 tat increases BAG3 via NF-κB signaling to induce autophagy during HIV-associated neurocognitive disorder. Cell Cycle 17(13):1614–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeganeh B, Jäger R, Gorman AM, Samali A, Ghavami S (2015) Induction of autophagy: role of endoplasmic reticulum stress and unfolded protein response. In: Hayat MA (ed) Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Academic Press, Amsterdam, pp 91–101

    Google Scholar 

  • Yoon S-Y, Kim D-H (2016) Alzheimer's disease genes and autophagy. Brain Res 1649:201–209

    CAS  PubMed  Google Scholar 

  • Yoriko K, Eriko F, Atsushi J (2002) Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum Mol Genet 13:13

    Google Scholar 

  • Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T (2014) Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111(43):15514–15519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xin H, Li T, Li L, Le W (2011) Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer's disease transgenic mouse model. J Alzheimers Dis Jad 24(4):739–749

    CAS  PubMed  Google Scholar 

  • Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SLJNG (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37(9):974–979

    CAS  PubMed  Google Scholar 

  • Zhou BY, Liu Y, Kim BO, Xiao Y, He JJ (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 tat expression in astrocytes. Mol Cell Neurosci 27(3):296–305

    CAS  PubMed  Google Scholar 

  • Zhou D, Eliezer M, Spector SA (2011) Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J Infect Dis 11:11

    Google Scholar 

Download references

Funding

Supported by the National Natural Science Foundation of China (81873761, 81571178, 81371399) and the 13th Key Science and Technology Five Year Plan of China (2018ZX10302104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Zhang or Yulin Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, T. & Zhang, Y. Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders. J. Neurovirol. 26, 824–833 (2020). https://doi.org/10.1007/s13365-020-00906-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-020-00906-4

Keywords

Navigation