Skip to main content
Log in

Entomopathogenic nematode distribution and edaphoclimatic conditions in the Cerrado of Minas Gerais, Brazil

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Based on the high diversity of Brazilian fauna and flora, edaphoclimatic conditions in the Cerrado of Minas Gerais, and the situation of utilization of EPNs in Brazil, a survey was conducted in order to relate the presence of these organisms with the physical and chemical attributes of the soil, combined with precipitation. To this end, soil samples were collected in areas with diversified vegetation types in Monte Carmelo, MG, at Juliana Farm. The samples were obtained every 15 days for 6 months. From each spot, soil samples (about 500 g) were collected for soil moisture characterization, nematode isolation and determination of pH, organic matter, potassium (K), calcium (Ca), magnesium (Mg), phosphorus (P), potential acidity (H + Al) and precipitation data (mm). Three populations of entomopathogenic nematodes of the Heterorhabditis amazonensis species were isolated in Cerrado stricto sensu and Gallery forest areas. The occurrence H. amazonensis could not be considered restricted to specific soil condition, as organic matter, humidity, pH, Ca, K, Mg and H + Al, especially considering the organic matter and K values, which had variable levels between the places of collection. The p values of the positive soil samples were at a lower level than the mean of the Gallery forest and Cerrado, and at the same level as maize and pasture area. The soil moisture in the Cerrado area increased with the higher values of precipitation; however, in the Gallery forest area this association was not observed. Also, the nematodes were isolated when the temperature began to decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Google Earth (2017)

Fig. 2

Similar content being viewed by others

References

  • Alumai A, Grewal PS, Hoy CW, Willoughby DA (2006) Factors affecting the natural occurrence of entomopathogenic nematodes in turfgrass. Biol Control 36:368–374. https://doi.org/10.1016/j.biocontrol.2005.08.008

    Article  Google Scholar 

  • Andaló V, Nguyen KB, Moino A Jr (2006) Heterorhabditis amazonensis n. sp. (Rhabditida: Heterorhabditidae) from Amazonas, Brazil. Nematology 86:853–867. https://doi.org/10.1163/156854106779799286

    Article  Google Scholar 

  • Andaló V, Moreira FG, Moino A Jr (2009) Studies of two new populations of Heterorhabditis amazonensis (Rhabditida: Heterorhabditidae). Nematropica 39:199–211

    Google Scholar 

  • Andaló V, Moreira GF, Moino A Jr (2014) Heterorhabditis amazonensis RSC5 (Rhabditida: Heterorhabditidae) movement and host recognition. Rev Colomb Entomol 40:91–97

    Google Scholar 

  • Arrington AE, Kennedy GG, Abney MR (2016) Applying insecticides through drip irrigation to reduce wireworm (Coleoptera: Elateridae) feeding damage in sweet potato. Pest Manag Sci 72:1133–1140. https://doi.org/10.1002/ps.4089

    Article  CAS  PubMed  Google Scholar 

  • Bellini LL, Dolinski C (2012) Foliar application of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) for the control of Diatraea saccharalis in greenhouse. Semin-Cienc Agrar 33:997–1004. https://doi.org/10.5433/1679-0359.2012v33n3p997

    Article  Google Scholar 

  • Brida AL, Rosa JMO, Oliveira CMG, Castro BMC, Serrão JE et al (2017) Entomopathogenic nematodes in agricultural areas in Brazil. Sci Rep 7:45254. https://doi.org/10.1038/srep45254

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown IM, Gaugler R (1997) Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica 43:363–375. https://doi.org/10.1163/005025997X00102

    Article  Google Scholar 

  • Burman M, Pye AE (1980) Neoplectana carpocapsae: respiration of infective juveniles. Nematologica 26:214–218

    Article  Google Scholar 

  • Campos-Herrera R, Pathak E, El-Borai FE, Stuart RJ, Gutierrez C et al (2013) Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol Biochem 66:163–174. https://doi.org/10.1016/j.soilbio.2013.07.011

    Article  CAS  Google Scholar 

  • Campos-Herrera R, El-Borai FE, Ebert TA, Schumann A, Duncan LW (2014) Management to control citrus greening alters the soil food web and severity of a pest-disease complex. Biol Control 76:41–51. https://doi.org/10.1016/j.biocontrol.2014.04.012

    Article  Google Scholar 

  • Campos-Herrera R, El-Borai FE, Martín JAR, Duncan LW (2016) Entomopathogenic nematode food web assemblages in Florida natural. Soil Biol Biochem 93:105–114. https://doi.org/10.1016/j.soilbio.2015.10.022

    Article  CAS  Google Scholar 

  • Caroli L, Glazer I, Gaugler R (1996) Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts. Biocontrol Sci Technol 6:227–233. https://doi.org/10.1080/09583159650039412

    Article  Google Scholar 

  • Dias BFS (1996) Cerrados: a characterization. In: Dias BFS (ed) Alternatives for the development of Cerrados: management and conservation of renewable natural resources Fundação Pró-Natureza – FUNATURA, Brasília, pp 11–25 (in Portuguese)

  • Dolinski C, Choo HY, Duncan LW (2012) Grower acceptance of entomopathogenic nematodes: case studies on three continents. J Nemat 44:226–235

    CAS  Google Scholar 

  • Duncan LW, Stuart RJ, El-Borai FE, Campos-Herrera R, Pathak E et al (2013) Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biol Control 64:26–36. https://doi.org/10.1016/j.biocontrol.2012.09.006

    Article  Google Scholar 

  • Embrapa (1997) Manual of soil analysis methods. Embrapa, Rio de Janeiro (in Portuguese)

    Google Scholar 

  • Ferraz LCCB (1998) Entomopathogenic nematodes. In: Alves SB (ed) Microbial control of insects. FEALQ, Piracicaba, pp 541–569 (in Portuguese)

    Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotechnol 35:1039–1042

    Article  Google Scholar 

  • Google Earth. Pro Version 7.1 (2017) https://www.google.com/earth/download/gep/agree.html. Accessed 24 Nov 2017

  • Giometti FHC, Leite LG, Tavares FM, Schmit FS, Batista Filho A et al (2011) Virulence of entomopathogenic nematodes (Nematoda: Rhabditida) against Sphenophorus levis (Coleoptera: Curculionidae). Bragantia 70:81–86. https://doi.org/10.1590/S0006-87052011000100013 (in Portuguese with English summary)

    Article  Google Scholar 

  • Glazer I (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, pp 169–187

    Chapter  Google Scholar 

  • Griffin CT, Chaerani R, Fallon D, Reid AP, Downes MJ (2000) Occurrence and distribution of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis indica in Indonesia. J Helminthol 74:143–150. https://doi.org/10.1017/S0022149X00000196

    Article  CAS  PubMed  Google Scholar 

  • Han RC, Ehlers RU (2000) Pathogenicity, development and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J Invertebr Pathol 75:55–58. https://doi.org/10.1006/jipa.1999.4900

    Article  CAS  PubMed  Google Scholar 

  • Hazir S, Keskin N, Stock SP, Kaya HK, Ozcan S (2003) Diversity and distribution of entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey. Biodivers Conserv 12:375–383

    Article  Google Scholar 

  • Hoy CW, Grewal PS, Lawrence JL, Jagdale G, Acosta N (2008) Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species. Biol Control 46:371–379. https://doi.org/10.1016/j.biocontrol.2008.06.001

    Article  CAS  Google Scholar 

  • Kanga FN, Waeyenberge L, Hauser S, Moens M (2012) Distribution of entomopathogenic nematodes in Southern Cameroon. J Invertebr Pathol 109:41–51

    Article  PubMed  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kung S, Gaugler R, Kaya HK (1990) Influence of soil pH and oxygen on persistence of Steinernema spp. J Nematol 22:440–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leite LG, Andaló V, Dolinski C, Moino Junior A, Batista E et al (2017) Status of entomopathogenic nematodes in integrated pest management strategies in Brazil. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CABI, Wallingford, pp 348–361

    Chapter  Google Scholar 

  • Medeiros JD (2011) Field Guide: cerrado vegetation MMA/SBF, Brasília (in Portuguese)

  • Molina JP, López NJC (2001) In vivo production of three entomonematodes with two infection systems in two host. Rev Colomb Entomol 27:73–78 (in Spanish with English summary)

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nascimento M, Lapido-Loureiro FEV (2009) Potassium in Brazilian agriculture: sources and alternative routes. In: Lapido-Loureiro FEV, Melamed R, Figueiredo Neto J (eds) Fertilizers: agroindustry and sustainability. CETEM/MCT, Rio de Janeiro, pp 305–335 (in Portuguese)

    Google Scholar 

  • Negrisoli AS Jr, Garcia MS, Barbosa-Negrisoli CRC (2010) Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with registered insecticides for Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) under laboratory conditions. Crop Protection 29:545–549

    Article  Google Scholar 

  • Nguyen KB, Ginarte CMA, Leite LG, Santos JM, Harakava R (2010) Steinernema brazilense n. sp. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Mato Grosso, Brazil. J Invertebr Pathol 103:8–20. https://doi.org/10.1016/j.jip.2009.09.004

    Article  PubMed  Google Scholar 

  • Oliveira DA (2010) Geoenvironmental analysis of the Perdizes river basin—Minas Gerais. Monograph. Federal University of Uberlândia, Uberlandia (in Portuguese)

    Google Scholar 

  • Potrich TD, Lorini I, Voss M, Steffens MCS, Pavani DP (2007) Methodology to rear Tenebrio molitor in laboratory to obtain larvae. Embrapa Trigo, Passo Fundo (in Portuguese)

    Google Scholar 

  • Risser K, Greenwood C, Walker N, Payton M, Talley J (2016) Prevalence and diversity of entomopathogenic nematodes spanning a mean annual precipitation gradient in pastureland in Oklahoma. Southwest Entomol 41:933–944

    Article  Google Scholar 

  • Sabino PHS, Sales FS, Guevara EJ, Moino Junior A, Filgueiras CC (2014) Compatibility of entomopathogenic nematodes (Nematoda: Rhabditida) with insecticides used in the tomato crop. Nematoda 1:e03014

    Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE, Mizell RF, Horton DL, Zaid A (2015) Field suppression of the peachtree borer, Synanthedon exitiosa, using Steinernema carpocapsae: effects of irrigation, a sprayable gel and application method. Biol Control 82:7–12. https://doi.org/10.1016/j.biocontrol.2014.12.003

    Article  Google Scholar 

  • Stock SP (1998) Systematics and biology of parasitic nematodes and associated with insects of economic importance. National University of Litoral, Esperanza (in Spanish)

    Google Scholar 

  • White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303

    Article  CAS  PubMed  Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and Heterorhabditid nematodes: a handbook of techniques. Series bulletin Arkansas Agricultural Experiment Station. Southern Coop, Fayetteville

    Google Scholar 

  • Yan X, Waweru B, Qiu X, Hategekimana A, Kajuga J et al (2016) New entomopathogenic nematodes from semi-natural and small-holder farming habitats of Rwanda. Biocontrol Sci Technol 26:820–834. https://doi.org/10.1080/09583157.2016.1159658

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Fazenda Juliana, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Andaló.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andaló, V., Mieko, J., Carvalho, F.J. et al. Entomopathogenic nematode distribution and edaphoclimatic conditions in the Cerrado of Minas Gerais, Brazil. Appl Entomol Zool 53, 129–136 (2018). https://doi.org/10.1007/s13355-017-0538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-017-0538-4

Keywords

Navigation