Skip to main content
Log in

Observational characteristics of cloud radiative effects over three arid regions in the Northern Hemisphere

  • Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Cloud–radiation processes play an important role in regional energy budgets and surface temperature changes over arid regions. Cloud radiative effects (CREs) are used to quantitatively measure the aforementioned climatic role. This study investigates the characteristics of CREs and their temporal variations over three arid regions in central Asia (CA), East Asia (EA), and North America (NA), based on recent satellite datasets. Our results show that the annual mean shortwave (SW) and net CREs (SWCRE and NCRE) over the three arid regions are weaker than those in the same latitudinal zone of the Northern Hemisphere. In most cold months (November–March), the longwave (LW) CRE is stronger than the SWCRE over the three arid regions, leading to a positive NCRE and radiative warming in the regional atmosphere–land surface system. The cold-season mean NCRE at the top of the atmosphere (TOA) averaged over EA is 4.1 W m–2, with a positive NCRE from November to March, and the intensity and duration of the positive NCRE is larger than that over CA and NA. The CREs over the arid regions of EA exhibit remarkable annual cycles due to the influence of the monsoon in the south. The TOA LWCRE over arid regions is closely related to the high-cloud fraction, and the SWCRE relates well to the total cloud fraction. In addition, the relationship between the SWCRE and the low-cloud fraction is good over NA because of the considerable occurrence of low cloud. Further results show that the interannual variation of TOA CREs is small over the arid regions of CA and EA, but their surface LWCREs show certain decreasing trends that correspond well to their decreasing total cloud fraction. It is suggested that combined studies of more observational cloud properties and meteorological elements are needed for indepth understanding of cloud–radiation processes over arid regions of the Northern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0. CO;2.

    Article  Google Scholar 

  • Bony, S., K. M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 2055–2077, doi: 10.1175/1520-0442(1997)010<2055:SSTALS>2.0. CO;2.

    Article  Google Scholar 

  • Bony, S., R. Colman, V. M. Kattsov, et al., 2006: How well do we understand and evaluate climate change feedback processes. J. Climate, 19, 3445–3482, doi: 10.1175/JCLI3819.1.

    Article  Google Scholar 

  • Boucher, O., D. Randall, P. Artaxo, et al., 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–658.

    Google Scholar 

  • Online Link Cesana, G., and H. Chepfer, 2012: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models Geophys. Res. Lett., 39, L20803, doi: 10.1029/2012GL053153.

    Google Scholar 

  • Cess, R. D., M. H. Zhang, B. A. Wielicki, et al., 2001: The influence of the 1998 El Niño upon cloud–radiative forcing over the Pacific warm pool. J. Climate, 14, 2129–2137, doi: 10.1175/1520-0442(2001)014<2129:TIOTEN>2.0.CO;2.

    Article  Google Scholar 

  • Chen, Y. H., H. T. Bai, J. P. Huang, et al., 2008: Comparison of cloud radiative forcing on the atmosphere–earth system over northwestern China with respect to typical geo-topographic regions. China Environ. Sci., 28, 97–101. (in Chinese)

    Google Scholar 

  • Chepfer, H., S. Bony, D. Winker, et al., 2010: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi: 10.1029/2009JD012251.

    Article  Google Scholar 

  • Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58, doi: 10.1038/nclimate1633.

    Article  Google Scholar 

  • Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.v137.656.

    Article  Google Scholar 

  • Doelling, D. R., N. G. Loeb, D. F. Keyes, et al., 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30, 1072–1090, doi: 10.1175/JTECH-D-12-00136.1.

    Article  Google Scholar 

  • Flato, G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 741–866.

    Google Scholar 

  • Online Link Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304, doi: 10.1175/1520-0442 (1992)005<1281:TEOCTO>2.0.CO;2.

    Article  Google Scholar 

  • Hartman, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 4495–4511, doi: 10.1175/1520-0442(2001)014<44 95:TCATEB>2.0.CO;2.

    Article  Google Scholar 

  • Huang, J. P., X. D. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys., 12, 5391–5398, doi: 10.5194/acp-12-5391-2012.

    Article  Google Scholar 

  • Huang, J. P., M. X. Ji, Y. K. Xie, et al., 2016: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 1131–1150, doi: 10.1007/s00382-015-2636-8.

    Article  Google Scholar 

  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559–565, doi: 10.1175/1520-0442(1994)007<0559: OTONCB>2.0.CO;2.

    Article  Google Scholar 

  • Lauer, A., and K. Hamilton, 2012: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 3823–3845, doi: 10.1175/JCLI-D-12-00451.1.

    Article  Google Scholar 

  • Li, Y., D. W. J. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 7263–7278, doi: 10.1175/JCLI-D-14-00825.1.

    Article  Google Scholar 

  • Liu, R. J., L. Zhang, H. B. Wang, et al., 2011: Cirrus cloud measurement using lidar over semi-arid areas. Chinese J. Atmos. Sci., 35, 863–870, doi: 10.3878/j.issn.1006-9895.2011.05.06. (in Chinese)

    Google Scholar 

  • Liu, Y. G., W. Wu, M. P. Jensen, et al., 2011: Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo. Atmos. Chem. Phys., 11, 7155–7170, doi: 10.5194/acp-11-7155-2011.

    Article  Google Scholar 

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, et al., 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748–766, doi: 10.1175/2008JCLI2637.1.

    Article  Google Scholar 

  • Ma, Z. G., and C. B. Fu, 2007: Evidence of the global drying trend during the latter half of the 20th century and its relationship with large-scale climate background. Sci. China Earth Sci., 50, 776–788, doi: 10.1007/s11430-007-0036-6.

    Article  Google Scholar 

  • Mace, G. G., S. Benson, K. L. Sonntag, et al., 2006: Cloud radiative forcing at the atmospheric radiation measurement program climate research facility. 1: Technique, validation, and comparison to satellite-derived diagnostic quantities. J. Geophys. Res., 111, D11S90, doi: 10.1029/2005JD005921.

    Google Scholar 

  • Meehl, G. A., T. F. Stocker, W. D. Collins, et al., 2007: Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 747–846.

    Google Scholar 

  • Online Link Min, M., P. C. Wang, J. R. Campbell, et al., 2010: Midlatitude cirrus cloud radiative forcing over China. J. Geophys. Res., 115, D20210, doi: 10.1029/2010JD014161.

    Article  Google Scholar 

  • Minnis, P., S. Sun-Mack, Y. Chen, et al., 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sensing, 49, 4401–4430, doi: 10.1109/TGRS.2011.2144602.

    Article  Google Scholar 

  • Ramanathan, V., R. D. Cess, E. F. Harrison, et al., 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, doi: 10.1126/science. 243.4887.57.

    Article  Google Scholar 

  • Randall, D. A., R. A. Wood, S. Bony, et al., 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 589–662.

    Google Scholar 

  • Online Link Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481–496, doi: 10.1175/1520-0469(2001)058<0481:AMCCCF> 2.0.CO;2.

    Article  Google Scholar 

  • Stubenrauch, C. J., W. B. Rossow, S. Kinne, et al., 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 1031–1049, doi: 10.1175/BAMS-D-12-00117.1.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323, doi: 10.1175/2008BAMS2634.1.

    Article  Google Scholar 

  • Wang, J., L. Zhang, J. P. Huang, et al., 2013: Macrophysical and optical properties of midlatitude cirrus clouds over a semi-arid area observed by micro-pulse lidar. J. Quant. Spectros. Radiative Transfer, 122, 3–12, doi: 10.1016/j.jqsrt.2013.02.006.

    Article  Google Scholar 

  • Wild, M., D. Folini, C. Schär, et al., 2013: The global energy balance from a surface perspective. Climate Dyn., 40, 3107–3134, doi: 10.1007/s00382-012-1569-8.

    Article  Google Scholar 

  • Wu, G. X., Y. Liu, X. Zhu, et al., 2009: Multi-scale forcing and the formation of subtropical desert and monsoon. Annales Geophysicae, 27, 3631–3644, doi: 10.5194/angeo-27-3631-2009.

    Article  Google Scholar 

  • Yin, Z. Y., H. L. Wang, and X. D. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and central Asia. J. Climate, 27, 7830–7848, doi: 10.1175/JCLI-D-14-00052.1.

    Article  Google Scholar 

  • Zhang, L. X., and T. J. Zhou, 2015: Drought over East Asia: A Review. J. Climate, 28, 3375–3399, doi: 10.1175/JCLI-D-14-00259.1.

    Article  Google Scholar 

  • Zhao, S. Y., H. Zhang, S. Feng, et al., 2015: Simulating direct effects of dust aerosol in arid and semi-arid regions using an aerosol–climate coupled system. Int. J. Climatol., 35, 1858–1866, doi: 10.1002/joc.2015.35.issue-8.

    Article  Google Scholar 

  • Zhao, T. B., L. Chen, and Z. G. Ma, 2014: Simulation of historical and projected climate change in arid and semi-arid areas by CMIP5 models. Chinese Sci. Bull,. 59, 412–429, doi: 10.1007/s11434-013-0003-x.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Li.

Additional information

Supported by the National Basic Research Program of China (2012CB955303), National Natural Science Foundation of China (41430425, 41375031, and 41505130), and State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (SKLLQG1407).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, T. & Habib, A. Observational characteristics of cloud radiative effects over three arid regions in the Northern Hemisphere. J Meteorol Res 31, 654–664 (2017). https://doi.org/10.1007/s13351-017-6166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6166-7

Key words

Navigation