Skip to main content
Log in

Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the “signal-to-noise” problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadov, R., C. Gerbig, R. Kretschmer, et al., 2009: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences, 6, 807–817, doi: 10.5194/bg-6-807-2009.

    Article  Google Scholar 

  • Andres, R. J., T. A. Boden, F.-M. Bréon, et al., 2012: A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences, 9, 1845–1871, doi: 10.5194/bg-9-1845-2012.

    Article  Google Scholar 

  • Baker, D. F., S. C. Doney, and D. S. Schimel, 2006: Variational data assimilation for atmospheric CO2. Tellus B, 58, 359–365, doi: 10.1111/j.1600-0889.2006.00218.x.

    Article  Google Scholar 

  • Ballav, S., P. K. Patra, M. Takigawa, et al., 2012: Simulation of CO2 concentration over East Asia using the regional transport model WRF-CO2. J. Meteor. Soc. Japan, 90, 959–976, doi: 10.2151/jmsj.2012-607.

    Article  Google Scholar 

  • Bousquet, P., P. Peylin, P. Ciais, et al., 2000: Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 1342–1346, doi: 10.1126/science.290.5495.1342.

    Article  Google Scholar 

  • Chevallier, F., P. I. Palmer, L. Feng, et al., 2014: Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett., 41, 1065–1070, doi: 10.1002/2013GL058772.

    Article  Google Scholar 

  • Conway, T. J., 2013: Atmospheric CO 2 Monthly Concentration Data, Ulaan Uul, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at http://ds.data.jma.go.jp/gmd/wdcgg/.]

    Google Scholar 

  • Deng, F., J. M. Chen, M. Ishizawa, et al., 2007: Global monthly CO2 flux inversion with a focus over North America. Tellus B, 59, 179–190, doi: 10.1111/j.1600-0889.2006.00235.x.

    Article  Google Scholar 

  • Engelen, R. J., S. Serrar, and F. Chevallier, 2009: Four-dimensional data assimilation of atmospheric CO2 using AIRS observations. J. Geophys. Res., 114, D03303, doi: 10.1029/2008JD010739.

    Article  Google Scholar 

  • Feng, L., P. I. Palmer, H. Bösch, et al., 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman filter. Atmos. Chem. Phys., 9, 2619–2633, doi: 10.5194/acp-9-2619-2009.

    Article  Google Scholar 

  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757, doi: 10.1002/qj.49712555417.

    Article  Google Scholar 

  • Greybush, S. J., E. Kalnay, T. Miyoshi, et al., 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511–522, doi: 10.1175/2010MWR3328.1.

    Article  Google Scholar 

  • Guan, D. B., Z. Liu, Y. Geng, et al., 2012: The gigatonne gap in China’s carbon dioxide inventories. Nat. Climate. Change, 2, 672–675, doi: 10.1038/nclimate1560.

    Article  Google Scholar 

  • Gurney, K. R., R. M. Law, A. S. Denning, et al., 2004: Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cy., 18, GB1010, doi: 10.1029/2003GB002111.

    Article  Google Scholar 

  • Gurney, K. R., D. L. Mendoza, Y. Y. Zhou, et al., 2009: High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environ. Sci. Technol., 43, 5535–5541, doi: 10.1021/es900806c.

    Article  Google Scholar 

  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811, doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    Article  Google Scholar 

  • Huang, Z. K., Z. Peng, H. N. Liu, et al., 2014: Development of CMAQ for East Asia CO2 data assimilation under an EnKF framework: A first result. Chinese Sci. Bull., 59, 3200–3208, doi: 10.1007/s11434-014-0348-9.

    Article  Google Scholar 

  • Jia, B. H., Z. H. Xie, Y. Y. Zeng, et al., 2015: Diurnal and seasonal variations of CO2 fluxes and their climate controlling factors for a subtropical forest in Ningxiang. Adv. Atmos. Sci., 32, 553–564, doi: 10.1007/s00376-014-4069-4.

    Article  Google Scholar 

  • Jiang, F., H. W. Wang, J. M. Chen, et al., 2013: Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences, 10, 5311–5324, doi: 10.5194/bg-10-5311-2013.

    Article  Google Scholar 

  • Kang, J. S., E. Kalnay, T. Miyoshi, et al., 2012: Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res., 117, D24101, doi: 10.1029/2012JD018259.

    Article  Google Scholar 

  • Kort, E. A., C. Frankenberg, C. E. Miller, et al., 2012: Space-based observations of megacity carbon dioxide. Geophys. Res. Lett., 39, L17806, doi: 10.1029/2012GL052738.

    Article  Google Scholar 

  • Kou, X. X., M. G. Zhang, and Z. Peng, 2013: Numerical simulation of CO2 concentrations in East Asia with RAMS-CMAQ. Atmos. Oceanic Sci. Lett., 6, 179–184, doi: 10.3878/j.issn.1674-2834.13.0022.

    Article  Google Scholar 

  • Kou, X. X., M. G. Zhang, Z. Peng, et al., 2015: Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model. Adv. Atmos. Sci., 32, 287–300, doi: 10.1007/s00376-014-4059-6.

    Article  Google Scholar 

  • Kurokawa, J., T. Ohara, T. Morikawa, et al., 2013: Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys., 13, 11019–11058, doi: 10.5194/acp-13-11019-2013.

    Article  Google Scholar 

  • Le Quéré, C., M. R. Raupach, J. G. Canadell, et al., 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2, 831–836, doi: 10.1038/ngeo689.

    Article  Google Scholar 

  • Lee, H., and S. H. Kim, 2013: Atmospheric CO 2 Monthly Concentration Data, Anmyeon-Do, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at http://ds.data.jma.go.jp/gmd/wdcgg/.]

    Google Scholar 

  • Liu, J. J., I. Fung, E. Kalnay, et al., 2012: Simultaneous assimilation of AIRS Xco2 and meteorological observations in a carbon climate model with an ensemble Kalman filter. J. Geophys. Res., 117, D05309, doi: 10.1029/2011JD016642.

    Article  Google Scholar 

  • Liu, M., H. Wang, H. Wang, et al., 2013: Refined estimate of China’s CO2 emissions in spatiotemporal distributions. Atmos. Chem. Phys., 13, 10873–10882, doi: 10.5194/acp-13-10873-2013.

    Article  Google Scholar 

  • Liu, Y., and X. L. Zou, 2015: Impact of 4DVAR assimilation of AIRS total column ozone observations on the simulation of Hurricane Earl. J. Meteor. Res., 29, 257–271, doi: 10.1007/s13351-015-4058-2.

    Article  Google Scholar 

  • Liu, Z., R. P. Bambha, J. P. Pinto, et al., 2013: Toward verifying fossil fuel CO2 emissions with the CMAQ model: Motivation, model description and initial simulation. J. Air Waste Manag. Assoc., 64, 419–435, doi: 10.1080/10962247.2013.816642.

    Article  Google Scholar 

  • Maki, T., M. Ikegami, T. Fujita, et al., 2010: New technique to analyze global distributions of CO2 concentrations and fluxes from non-processed observational data. Tellus B, 62, 797–809, doi: 10.1111/j.1600-0889.2010.00488.x.

    Article  Google Scholar 

  • Mays, K. L., P. B. Shepson, B. H. Stirm, et al., 2009: Aircraftbased measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol., 43, 7816–7823, doi: 10.1021/es901326b.

    Article  Google Scholar 

  • McKain, K., S. C. Wofsy, T. Nehrkorn, et al., 2012: Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA, 109, 8423–8428, doi: 10.1073/pnas.1116645109.

    Article  Google Scholar 

  • Miyazaki, K., 2009: Performance of a local ensemble transform Kalman filter for the analysis of atmospheric circulation and distribution of long-lived tracers under idealized conditions. J. Geophys. Res., 114, D19304, doi: 10.1029/2009JD011892.

    Article  Google Scholar 

  • Nassar, R., D. B. A. Jones, P. Suntharalingam, et al., 2010: Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species. Geosci. Model Dev., 3, 689–716, doi: 10.5194/gmd-3-689-2010.

    Article  Google Scholar 

  • Peng, Z., M. G. Zhang, X. X. Kou, et al., 2015: A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos. Chem. Phys., 15, 1087–1104, doi: 10.5194/acp-15-1087-2015.

    Article  Google Scholar 

  • Peters, W., J. B. Miller, J. Whitaker, et al., 2005: An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi: 10.1029/2005JD006157.

    Article  Google Scholar 

  • Peters, W., A. R. Jacobson, C. Sweeney, et al., 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925–18930, doi: 10.1073/pnas.0708986104.

    Article  Google Scholar 

  • Peylin, P., R. M. Law, K. R. Gurney, et al., 2013: Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10, 6699–6720, doi: 10.5194/bgd-10-5301-2013.

    Article  Google Scholar 

  • Piao, S. L., J. Y. Fang, P. Ciais, et al., 2009: The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009–1013, doi: 10.1038/nature07944.

    Article  Google Scholar 

  • Pillai, D., C. Gerbig, R. Ahmadov, et al., 2011: High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower. Atmos. Chem. Phys., 11, 7445–7464, doi: 10.5194/acpd-11-6875-2011.

    Article  Google Scholar 

  • Saeki, T., S. Maksyutov, M. Sasakawa, et al., 2013: Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res., 118, 1100–1122, doi: 10.1002/jgrd.50127.

    Google Scholar 

  • Stephens, B. B., K. R. Gurney, P. P. Tans, et al., 2007: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–1735, doi: 10.1126/science.1137004.

    Article  Google Scholar 

  • Strassmann, K. M., F. Joos, and G. Fischer, 2008: Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B, 60, 583–603, doi: 10.1111/j.1600-0889.2008.00340.x.

    Article  Google Scholar 

  • Tangborn, A., L. L. Strow, B. Imbiriba, et al., 2013: Evaluation of a new middle–lower tropospheric CO2 product using data assimilation. Atmos. Chem. Phys., 13, 4487–4500, doi: 10.5194/acp-13-4487-2013.

    Article  Google Scholar 

  • Tian, X. J., Z. H. Xie, and A. G. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method. J. Geophys. Res., 113, D21124, doi: 10.1029/2008JD010358.

    Article  Google Scholar 

  • Tian, X. J., Z. H. Xie, and Q. Sun, 2011: A POD-based ensemble four-dimensional variational assimilation method. Tellus A, 63, 805–816, doi: 10.1111/j.1600-0870.2011.00529.x.

    Article  Google Scholar 

  • Tian, X. J., Z. H. Xie, Y. Liu, et al., 2014: A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations. Atmos. Chem. Phys., 14, 13281–13293,doi: 10.5194/acp- 14-13281-2014.

    Article  Google Scholar 

  • van der Werf, G. R., J. T. Randerson, L. Giglio, et al., 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11707–11735, doi: 10.5194/acp-10-11707-2010.

    Article  Google Scholar 

  • Wang, B., J. J. Liu, S. D. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715–727, doi: 10.1007/s00376-009-9122-3.

    Article  Google Scholar 

  • Wunch, D., P. O. Wennberg, G. C. Toon, et al., 2009: Emissions of greenhouse gases from a North American megacity. Geophys. Res. Lett., 36, L15810, doi: 10.1029/2009gl039825.

    Article  Google Scholar 

  • Yu, G. R., X. J. Zhu, Y. L. Fu, et al., 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biol., 19, 798–810, doi: 10.1111/gcb.12079.

    Article  Google Scholar 

  • Zhang, B., X. J. Tian, J. H. Sun, et al., 2015: PODEn4DVar-based radar data assimilation scheme: Formulation and preliminary results from real-data experiments with advanced research WRF (ARW). Tellus A, 67, 26045, doi: 10.3402/tellusa.v67.26045.

    Article  Google Scholar 

  • Zhang, H. F., B. Z. Chen, I. T. van der Laan-Luijk, et al., 2014: Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos. Chem. Phys., 14, 5807–5824, doi: 10.5194/acp-14-5807-2014.

    Article  Google Scholar 

  • Zhang, M. G., I. Uno, S. Sugata, et al., 2002: Numerical study of boundary layer ozone transport and photochemical production in East Asia in the wintertime. Geophys. Res. Lett., 29, 40-1–40-4, doi: 10.1029/2001GL014368.

    Google Scholar 

  • Zhao, Y., C. P. Nielsen, and M. B. McElroy, 2012: China’s CO2 emissions estimated from the bottom up: Recent trends, spatial distributions, and quantification of uncertainties. Atmos. Environ., 59, 214–223, doi: 10.1016/j.atmosenv.2012.05.027.

    Article  Google Scholar 

  • Zhou, L. X., 2013: Atmospheric CO 2 Monthly Concentration Data, Mt. Waliguan, World Data Centre for Greenhouse Gases. Japan Meteorology Agency, Tokyo. [Available online at http://ds.data.jma.go.jp/gmd/wdcgg/.]

    Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their helpful comments. CarbonTracker results used in the model as initial fields and boundary conditions were provided by NOAA ESRL, Boulder, Colorado, USA (http://carbontracker.noaa.gov). We express deep gratitude to the research team and support staff for providing their data on the website.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meigen Zhang.

Additional information

Supported by the National Natural Science Foundation of China (41130528), National High Technology Research and Development Program of China (2013AA122002), Strategic Priority Research Program—Climate Change: Carbon Budget and Relevant Issues (XDA05040404), and National Key Technology Research and Development Program of China (2016YFC0202103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, X., Tian, X., Zhang, M. et al. Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation. J Meteorol Res 31, 834–851 (2017). https://doi.org/10.1007/s13351-017-6149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6149-8

Key words

Navigation