Skip to main content
Log in

Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The initial tendency approach is used to diagnose systematic errors in global GRAPES (Global/Regional Assimilation Prediction System), including overly strong westerlies in the northern midlatitudes, cold/warm bias dipoles in the vicinity of the tropopause, and excessively strong southerlies in downstream regions of the Tibetan Plateau. This approach, involving the use of the assimilation system, focuses on the first few time steps of numerical weather forecasts to identify the deficiencies in diabatic forcing. The results show that there is insufficient diabatic dissipation in the upper troposphere and lower stratosphere of the northern midlatitudes and the lower troposphere of most latitudes, which results from the absence of a parameterization of subgrid orographic drag in global GRAPES. A scheme to parameterize the effects of these drags is therefore tested and the experiments indicate that the newly introduced scheme reduces zonal momentum budget residuals, weakens the northern midlatitude westerlies and southerlies in the downstream regions of the Tibetan Plateau, decreases the cold/warm bias dipoles, and leads to improved objective verification scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, et al., 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Proceedings Eighth Conference on Numerical Weather Prediction. Baltimore, MD, February, Amer. Meteor. Soc., 726–733.

    Google Scholar 

  • Bougeault, P., A. J. Clar, B. Benech, et al., 1990: Momentum budget over the Pyrénées: The PYREX experiment. Bull. Amer. Meteor. Soc., 71, 806–818.

    Article  Google Scholar 

  • Chen Dehui, Xue Jishan, Yang Xuesheng, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chin. Sci. Bull., 53, 3433–3445.

    Google Scholar 

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, et al., 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244.

    Article  Google Scholar 

  • Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023.

    Article  Google Scholar 

  • Ern, M., P. Preusse, J. C. Gille, et al., 2011: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res., 116, D19107.

    Article  Google Scholar 

  • Gregory, D., G. J. Shutts, and J. R. Mitchell, 1998: A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124, 463–493.

    Article  Google Scholar 

  • Han, J., and H. L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520–533.

    Article  Google Scholar 

  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    Google Scholar 

  • Hu Jianglin, Shen Xueshun, Zhang Hongliang, et al., 2007: Characteristics of GRAPES dynamical core in long-term integration. J. Appl. Meteor. Sci., 18, 276–284. (in Chinese)

    Google Scholar 

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.

    Article  Google Scholar 

  • Jiang, Q. F., A. Reinecke, and J. D. Doyle, 2014: Orographic wave drag over the Southern Ocean: A linear theory perspective. J. Atmos. Sci., 71, 4235–4252.

    Article  Google Scholar 

  • Kim, Y. J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902.

    Article  Google Scholar 

  • Kim, Y. J., and T. Y. Hogan, 2004: Response of a global atmospheric forecast model to various drag parametrizations. Tellus A, 56, 472–484.

    Article  Google Scholar 

  • Kim, Y. J., and J. D. Doyle, 2005: Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 1893–1921.

    Article  Google Scholar 

  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608–627.

    Article  Google Scholar 

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707–9714.

    Article  Google Scholar 

  • Liu, K, Q. Y. Chen, and J. Sun, 2015: Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model. J. Meteor. Res., 29, 806–822.

    Article  Google Scholar 

  • Liu, Y., and J. S. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28, 1061–1074.

    Article  Google Scholar 

  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127.

    Article  Google Scholar 

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800.

    Article  Google Scholar 

  • Milton, S. F., and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124, 2023–2045.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.

    Article  Google Scholar 

  • Pan, H. L., and W. S. Wu, 1995: Implementing a Mass Flux Convective Parameterization Package for the NMC Medium Range Forecast Model. NMC Office Note 409, Washington, DC, 1–40.

    Google Scholar 

  • Pierrehumbert, R. T., 1986: An essay on the parameterization of orographic wave drag. Proceedings of Seminar/Workshop on Observation, Theory, and Modelling of Orographic Effects. European Centre for Medium Range Weather Forecasts, Reading, United Kingdom, ECMWF, 251–282.

    Google Scholar 

  • Pulido, M., C. Rodas, D. Dechat, et al., 2013: High gravity-wave activity observed in Patagonia, southern America: Generation by a cyclone passage over the Andes mountain range. Quart. J. Roy. Meteor. Soc., 139, 451–466.

    Article  Google Scholar 

  • Rodwell, M. J., and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129–146.

    Article  Google Scholar 

  • Rodwell, M. J., and T. Jung, 2008: Understanding the local and global impacts of model physics changes: An aerosol example. Quart. J. Roy. Meteor. Soc., 134, 1479–1497.

    Article  Google Scholar 

  • Shen Xueshun, Wang Minghuan, and Xiao Feng, 2011: A study of the high-order accuracy and positivedefinite conformal advection scheme in the GRAPES model. I: Scientific design and idealized tests. Acta Meteor. Sinica, 69, 1–15. (in Chinese)

    Google Scholar 

  • Tan Chao, Liu Qijun, and Ma Zhanshan, 2013: Influences of sub-grid convective processes on cloud forecast in the GRAPES global model. Acta Meteor. Sinica, 71, 867–878. (in Chinese)

    Google Scholar 

  • Vosper, S. B., 2015: Mountain waves and wakes generated by South Georgia: Implications for drag parametrization. Quart. J. Roy. Meteor. Soc., 141, 2813–2827.

    Article  Google Scholar 

  • Wang Jincheng, Zhuang Zhaorong, Han Wei, et al., 2014: An improvement of background error covariance in the global GRAPES variational data assimilation and its impact on the analysis and prediction: Statistics of the three-dimensional structure of background error covariance. Acta Meteor. Sinica, 72, 62–78. (in Chinese)

    Google Scholar 

  • Webster, S., A. R. Brown, D. R. Cameron, et al., 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989–2010.

    Article  Google Scholar 

  • Wells, H., S. B. Vosper, and X. Yan, 2011: An assessment of a mountain-wave parametrization scheme using satellite observations of stratospheric gravity waves. Quart. J. Roy. Meteor. Soc., 137, 819–828.

    Article  Google Scholar 

  • Xu Guoqiang, Chen Dehui, Xue Jishan, et al., 2008: The program structure designing and optimizing tests of GRAPES physics. Chin. Sci. Bull., 53, 3470–3476.

    Google Scholar 

  • Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53, 3084–3102.

    Article  Google Scholar 

  • Xue Jishan, Zhuang Shiyu, Zhu Guofu, et al., 2008: Scientific design and preliminary results of threedimensional variational data assimilation system of GRAPES. Chin. Sci. Bull., 53, 3446–3457.

    Article  Google Scholar 

  • Yang Xuesheng, Hu Jianglin, Chen Dehui, et al., 2008: Verification of GRAPES unified global and regional numerical weather prediction model dynamic core. Chin. Sci. Bull., 53, 3458–3464.

    Google Scholar 

  • Zhang Renhe and Shen Xueshun, 2008: On the development of the GRAPES—A new generation of the national operational NWP system in China. Chin. Sci. Bull., 53, 3429–3432.

    Google Scholar 

  • Zhu Guofu, Xue Jishan, Zhang Hua, et al., 2008: Direct assimilation of satellite radiance data in GRAPES variational assimilation system. Chin. Sci. Bull., 53, 3465–3469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiying Chen  (陈起英).

Additional information

Supported by the National Natural Science Foundation of China (41375107 and 41305090), National Science and Technology Support Program of China (2012BAC22B02), and China Meteorological Administration Special Public Welfare Research Fund (GYHY201406005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Shen, X., Sun, J. et al. Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES. J Meteorol Res 30, 771–788 (2016). https://doi.org/10.1007/s13351-016-6033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-6033-y

Keywords

Navigation