Skip to main content
Log in

A numerical study of the evolution of a mesoscale convective vortex on the Meiyu front

  • Articles
  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

The Advanced Research WRF (Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex (MCV) that formed on the Meiyu front and lasted for more than two days. The simulation is used to investigate the underlying reasons for the genesis, intensification, and vertical expansion of the MCV. This MCV is of a type of mid-level MCV that often develops in the stratiform regions of mesoscale convective systems. The vortex strengthened and reached its maximum intensity and vertical extent (from the surface to upper levels) when secondary organized convection developed within the mid-level circulation. The factors controling the evolution of the kinetic and thermal structure of the MCV are examined through an analysis of the budgets of vorticity, temperature, and energy. The evolution of the local Rossby radius of deformation reveals the interrelated nature of the MCV and its parent mesoscale convective system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels, D. L., and R. A. Maddox, 1991: Mid-level cyclonic vortices generated by mesoseale convective systems. Mon. Wea. Rev., 119, 104–118.

    Article  Google Scholar 

  • Chen Liqiang, Chen Shoujun, Zhou Xiaoshan, et al., 2005: A numerical study of the MCS in a cold vortex over-northeastern China. Acta Meteor. Sinica, 63(2), 173–183. (in Chinese)

    Google Scholar 

  • Chen, S. S., and W. M. Frank, 1993: A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics. J. Atmos. Sci., 50, 2401–2426.

    Article  Google Scholar 

  • Conzemius, R. J., R. W. Moore, M. T. Montgomery, et al., 2007: Mesoscale convective vortex formation in a weakly sheared moist neutral environment. J. Atmos. Sci., 64, 1443–1466.

    Article  Google Scholar 

  • —, and M. T. Montgomery, 2010: Mesoscale convective vortices in multiscale, idealized simulations: Dependence on background state, interdependency with moist baroclinic cyclones, and comparison with BAMEX observations. Mon. Wea. Rev., 138, 1119–1139.

    Article  Google Scholar 

  • Davis, C. A., and M. L. Weisman, 1994: Balanced dynamics of mesoscale vortices produced in simulated convective systems. J. Atmos. Sci., 51, 2005–2030.

    Article  Google Scholar 

  • —, and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686–704.

    Article  Google Scholar 

  • Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 2152–215

    Article  Google Scholar 

  • Fritsch, J. M., J. D. Murphy, and J. S. Kain, 1994: Warm core vortex amplification over land. J. Atmos. Sci., 51, 1780–1807.

    Article  Google Scholar 

  • Galarneau, T. J. Jr., L. F. Bosart, C. A. Davis, et al., 2009: Baroclinic transition of a long-lived mesoscale convective vortex. Mon. Wea. Rev., 137, 562–584.

    Article  Google Scholar 

  • Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.

    Article  Google Scholar 

  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.

    Article  Google Scholar 

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.

    Article  Google Scholar 

  • Jiang, H. L., and D. J. Raymond, 1995: Simulation of a mature mesoscale convective system using a nonlinear balance model. J. Atmos. Sci., 52, 161–175.

    Article  Google Scholar 

  • Jiang Yongqiang and Wang Yuan, 2012: Nummerical simulation on the formation of mesoscale vortex in Col field. Acta Meteor. Sinica, 26(1), 112–128.

    Article  Google Scholar 

  • Kirk, J. R., 2003: Comparing the dynamical development of two mesoscale convective vortices. Mon. Wea. Rev., 131, 862–890.

    Article  Google Scholar 

  • Knievel, J. C., and R. H. Johnson, 2003: A scale-discriminating vorticity budget for a mesoscale vortex in a midlatitude, continental convective mesoscale system. J. Atmos. Sci., 60, 781–794.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Liu, C. H., K. Ikeda, G. Thompson, et al., 2011: High-resolution simulations of wintertime precipitation in the Colorado headwaters region: Sensitivity to physics parameterizations. Mon. Wea. Rev., 139, 3533–3553.

    Article  Google Scholar 

  • Menard, R. D., and J. M. Fritsch, 1989: A mesoscale convective complex-generated inertially stable warm core vortex. Mon. Wea. Rev., 117, 1237–1261.

    Article  Google Scholar 

  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077.

    Article  Google Scholar 

  • Rogers, R. F., and J. M. Fritsch, 2001: Surface cyclogenesis from convectively driven amplification of mid-level mesoscale convective vortices. Mon. Wea. Rev., 129, 605–637.

    Article  Google Scholar 

  • Xu Wenhui, Ni Yunqi, Wang Xiaokang, et al., 2012: The evolution of a meso-β-scale convective vortex in the Dabie mountain area. Acta Meteor. Sinica, 26(5), 597–613.

    Article  Google Scholar 

  • Yu, C.-K., B. J.-D. Jou, and B. F. Smull, 1999: Formative stage of a long-lived mesoscale vortex observed by airborne Doppler radar. Mon. Wea. Rev., 127, 838–857.

    Article  Google Scholar 

  • Zhang, D.-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 2763–2785.

    Article  Google Scholar 

  • —, and J. M. Fritsch, 1987: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warmcore vortex and the mesoscale convective complex. J. Atmos. Sci., 44, 2593–2612.

    Article  Google Scholar 

  • Zhang Xiaohui and Ni Yunqi, 2010: A diagnostic case study on the comparison between the frontal and on-frontal convective-systems. Acta Meteor. Sinica, 24(1), 66–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxin Wang  (王金鑫).

Additional information

Supported by the National Natural Science Foundation of China (40875028) and National Key Basic Research and Development (973) Program of China (2013CB430103).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Pan, Y. & Wang, S. A numerical study of the evolution of a mesoscale convective vortex on the Meiyu front. Acta Meteorol Sin 27, 889–909 (2013). https://doi.org/10.1007/s13351-013-0509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0509-9

Key words

Navigation