Skip to main content
Log in

Oscillations on one dimensional time dependent center manifolds: algebraic curves approach

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

We consider a one dimensional time dependent ODE of degree \(n\ge 2\) as the restriction of an arbitrary nonautonomous ODE to the associated one dimensional center manifold. Then, we present an algorithm for computing time dependent algebraic curves of m-th degree with \(m\le n-1\). This computation leads us to a m dimensional time dependent bifurcation equation. We determine oscillatory behaviors of the system with the help of the bifurcation equation. Finally, we complete the method for a general parametric planar system and find periodic solutions. The method can be applied for a wide range of nonautonomous systems and does not have restrictions of classical methods such as the Poincaré map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Furthermore since H is invertible so \(R(t)=-H^{-1}(e^{-tH}-I)/t\), this does not hold for C in general

References

  1. Algaba, A., Checa, I., Garcia, C., Gine, J.: Analytic integrability inside a family of degenerate centers. Nonlinear Anal. Real World Appl. 31, 288–307 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aulbach, B.: A reduction principle for nonautonomous differential equations. Arch. Math. 39, 217–232 (1982)

    Article  MathSciNet  Google Scholar 

  3. Candido, M.R., Llibre, J., Valls, C.: Non-existence, existence, and uniqueness of limit cycles for a generalization of the Van der Pol-Duffing and the Rayleigh-Duffing oscillators. Physica D 407, 132458 (2020)

    Article  MathSciNet  Google Scholar 

  4. Candido, M.R., Novaes, D.D.: On the torus bifurcation in averaging theory. J. Differ. Equ. 268, 4555–4576 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cheng, H., de la Llave, R.: Time dependent center manifold in PDEs. Discrete Contin. Dyn. Syst. 40(12), 6709–6745 (2020)

    Article  MathSciNet  Google Scholar 

  6. Church, K.E.M., Liu, X.: Computation of center manifolds and some codimension-one bifurcations for impulsive delay differential equations. J. Differ. Equ. 267, 3852–3921 (2019)

    Article  Google Scholar 

  7. da Cruz, L.P.C., Torregrosa, J.: Simultaneous bifurcation of limit cycles from a cubic piecewise center with two period annuli. J. Math. Anal. Appl. 461, 248–272 (2018)

  8. Darboux, G.: Memoire sur les equations differentielles algebriques du premier ordre et du premier degre(Melanges). Bull. Sci. Math 2, 60–96, 123–144, 151–200 (1878)

  9. Fabbri, R., Johnson, R.: A nonautonomous saddle-node bifurcation pattern. Stochastics Dyn. 4(3), 335–350 (2004)

    Article  MathSciNet  Google Scholar 

  10. Franca, M., Johnson, R.: Remarks on nonautonomous bifurcation theory. Rend. Istit. Mat. Univ. Trieste 49, 215–243 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Franca, M., Johnson, R.: On the non-autonomous Hopf bifurcation problem: systems with rapidly varying coefficients. Electron. J. Qual. Theory Differ. Equ. 56, 1–24 (2019)

    Article  MathSciNet  Google Scholar 

  12. Franca, M., Johnson, R., Munoz-Villarragut, V.: On the nonauotonomous Hopf bifurcation problem. Discrete Contin. Dyn. Syst. Ser. S 9(4), 1119–1148 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of \(Z_{2}\)-equivariant cubic switching systems showing eighteen limit cycles. J. Differ. Equ. 266, 1221–1244 (2019)

  14. Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  Google Scholar 

  15. Kloeden, P.E., Potzsche, C.: Nonautonomous bifurcation scenarios in SIR models. Math. Meth. Appl. Sci. 38, 3495–3518 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. American Mathematical Society (2011)

  17. Knobloch, H.W., Aulbach, B.: The role of center manifolds in ordinary differential equations. BSB B.G. Teubner Verlagsgesellschaft 47, 179–189 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Li, J., Quan, T., Zhang, W.: Bifurcation and number of subharmonic solutions of a 4D non-autonomous slow-fast system and its application. Nonlinear Dyn. 92, 721–739 (2018)

    Article  Google Scholar 

  19. Llibre, J., Pantazi, Ch.: Darboux theory of integrability for a class of nonautonomous vector fields. J. Math. Phys. 50, 102705 (2009)

    Article  MathSciNet  Google Scholar 

  20. Llibre, J., Ramirez, R., Ramirez, V.: An inverse approach to the center problem. Rend. Circ. Mat. Palermo, II. Ser (2018)

  21. Llibre, J., Swirszcz, G.: Relationships between limit cycles and algebraic invariant curves for quadratic systems. J. Differ. Equ. 229, 529–537 (2006)

    Article  MathSciNet  Google Scholar 

  22. Malkin, I.G.: Theory of Stability of Motion. U.S. Atomic Energy Commission, Office of Technical Information (1959)

  23. Molnar, T.G., Dombovari, Z., Insperger, T., Stepan, G.: Bifurcation analysis of nonlinear time-periodic time-delay systems via semidiscretization. Int. J. Numer. Methods Eng. 115, 57–74 (2018)

    Article  MathSciNet  Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  25. Poincaré, H.: Sur l’equilibre d’une masse fluide animee d’un mouvement de rotation. Acta Mathematica 7, 259–380 (1885)

  26. Potzsche, C., Rasmussen, M.: Taylor approximation of integral manifolds. J. Dyn. Differ. Equ. 18(2), 427–460 (2006)

    Article  MathSciNet  Google Scholar 

  27. Sell, G.R.: The structure of a flow in the vicinity of an almost periodic motion. J. Differ. Equ. 27, 359–393 (1978)

    Article  MathSciNet  Google Scholar 

  28. Sheng, L., Wang, S., Li, X., Han, M.: Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method. J. Math. Anal. Appl. 490, 124311 (2020)

    Article  MathSciNet  Google Scholar 

  29. Sinha, S.C.: On the analysis of time-periodic nonlinear dynamical systems. Sadhana 22(3), 411–434 (1997)

    Article  MathSciNet  Google Scholar 

  30. Szalai, R., Stepan, G.: Period doubling bifurcation and center manifold reduction in a time-periodic and time-delayed model of machining. J. Vib. Control 16(7–8), 1169–1187 (2010)

    Article  MathSciNet  Google Scholar 

  31. Virgin, L.N., Thompson, J.M.T.: Applications of bifurcation: nonautonomous periodically-excited systems. Int. J. Bifurc. Chaos 28(11), 1830035 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  Google Scholar 

  33. Xu, J., Yu, P.: Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks. Int. J. Bifurc. Chaos 14(8), 2777–2798 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rabiei Motlagh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we give an illustration to show how the time dependent algebraic curves work. We assume \(n=2\) and consider two cases \(m =1<n\) and \(n\le m=3\) (see Remark 1). Consider the equation

$$\begin{aligned} \dot{x}(t)=a_0(t)+a_1(t)x(t)+a_2(t)x^2(t), \end{aligned}$$
(42)

where \(a_0(t)\) and \(a_2(t)\) are not identically zero. We begin with the trivial case \(m=1\) and try to find an algebraic curve as \(F(x,t)=b_0(t)+x\). In this case, the cofactor curve K(xt) is of the form \(K(x,t)=c_0(t)+c_1(t)x(t)\), and we have

$$\begin{aligned} \frac{d}{dt}F\left( x(t),t\right) =K\left( x(t),t\right) F\left( x(t),t\right) \end{aligned}$$

or equivalently

$$\begin{aligned} \left( a_0(t)-b_0(t) c_0(t)+b_0'(t)\right) +\left( a_1(t)-b_0(t) c_1(t) -c_0(t)\right) x(t)+\left( a_2(t)-c_1(t)\right) x^2(t)=0. \end{aligned}$$

It implies that \(c_0(t)=a_1(t)-c_1(t) b_0(t)\), \(c_1(t)=a_2(t)\), and

$$\begin{aligned} b_0'(t)= -a_0(t)+a_1(t)b_0(t) -a_2(t) b^2_0(t). \end{aligned}$$

Note that, if \(b_0(t)\) is a solution of the above equation, then \(x(t)=-b_0(t)\) is a solution of (42); Especially, if \(b_0(t)\) is periodic, then x(t) is periodic too.

Now, let \(m=3\) and try for an algebraic curve of the form

$$\begin{aligned} F(x,t)=b_0(t)+b_1(t)x+b_2(t)x^2+x^3. \end{aligned}$$

From Remark 1, we consider (42) in the form

$$\begin{aligned} \dot{x}(t)=a_0(t)+a_1(t)x(t)+a_2(t)x^2(t)+a_3(t)x^3(t)+a_4(t)x^4(t), \end{aligned}$$
(43)

with \(a_3(t),a_4(t)\equiv 0\) and the cofactor curve of the form

$$\begin{aligned} K(x,t)=c_0(t)+c_1(t)x+c_2(t)x^2+c_3(t)x^3. \end{aligned}$$

Thus,

$$\begin{aligned}&K\left( x(t),t\right) F\left( x(t),t\right) -\frac{d}{dt}F\left( x(t),t\right) \\&\quad =\left( b_0(t) c_0(t)-a_0(t) b_1(t)-b_0^{'}(t)\right) +c_3(t)x^6(t)\\&\qquad +\left( b_2(t) c_3(t)+c_2(t)\right) x^5(t)+\left( -3 a_2(t)+b_2(t) c_2(t) +b_1(t) c_3(t)+c_1(t)\right) x^4(t)\\&\qquad +\left( -2 a_2(t) b_2(t)-3 a_1(t)+b_2(t) c_1(t)+b_1(t) c_2(t) +b_0(t) c_3(t)+c_0(t)\right) x^3(t)\\&\qquad +\left( -a_2(t) b_1(t)-2 a_1(t) b_2(t)-3 a_0(t)+b_2(t) c_0(t) +b_1(t) c_1(t)+b_0(t) c_2(t)-b_2'(t)\right) x^2(t)\\&\qquad + \left( -a_1(t) b_1(t)-2 a_0(t) b_2(t) +b_1(t) c_0(t)+b_0(t) c_1(t)-b_1'(t)\right) x(t). \end{aligned}$$

It implies that \(c_3(t)=c_2(t)\equiv 0\), \(c_1(t)=3a_2(t)\), \(c_0(t)=3 a_1(t)-a_2(t) b_2(t)\), and

$$\begin{aligned} \left\{ \begin{array}{l} b_0^{'}(t)=3 a_1(t) b_0(t)-a_2(t) b_2(t) b_0(t)-a_0(t) b_1(t),\\ b_1^{'}(t)=3 a_2(t) b_0(t)+2 a_1(t) b_1(t)+b_2(t) \left( -a_2(t) b_1(t)-2 a_0(t)\right) , \\ b_2^{'}(t)=-a_2(t) b_2(t){}^2+a_1(t) b_2(t)+2 a_2(t) b_1(t)-3 a_0(t). \end{array}\right. \end{aligned}$$
(44)

It is easy to check that the above equalities are in agreement with Remark 1.

In an especial case, let

$$\begin{aligned} a_0(t)= & {} \frac{128 \cos (t)}{-684 \cos (2 t)+81 \cos (4 t)+731},\\ a_1(t)= & {} \frac{378 \sin (2 t)-81 \sin (4 t)}{-684 \cos (2 t)+81 \cos (4 t)+731}, \\ a_2(t)= & {} \frac{288 \cos (t)}{-684 \cos (2 t)+81 \cos (4 t)+731}. \end{aligned}$$

It can be checked directly from (44) that

$$\begin{aligned} b_0(t)=\frac{1}{6} \sin (t) (3 \cos (2 t)-7), \ \ b_1(t)=\frac{2}{3}, \ \ b_2(t)=0 \end{aligned}$$

is a solution for (44), and thus a solution for (19). Finally, it is easy to see that \(F(\sin (t),t)\equiv 0\), which means that \(x(t)=\sin t\) is a solution of (42). This fact can also be verified by putting \(x(t)=\sin t\) in (42).

As another example, let \(m=3\), \(n=4\) with \(a_4(t) \ne 0\) and consider the equation

$$\begin{aligned} \dot{x}(t)=a_0(t)+a_1(t)x(t)+ a_{2}(t)x^2(t)+ a_3(t)x^{3}(t) + a_4(t)x^{4}(t). \end{aligned}$$
(45)

In this case, the algebraic curve is of the form

$$\begin{aligned} F(t) = b_0(t) + b_1(t)x + b_2(t)x^{2} + x^{3} \end{aligned}$$

with the corresponding cofactor \(K(t)=c_0(t)+c_1(t)x+c_{2}(t)x^{2} +c_3(t)x^{3}\). By using (14), (15), and (16), we find

$$\begin{aligned} c_0(t)= & {} -a_4(t) b_2(t){}^3+a_3(t) b_2(t){}^2-a_2(t) b_2(t) +3 a_4(t) b_1(t) b_2(t)\\&-3 a_4(t) b_0(t)-2 a_3(t) b_1(t)+3 a_1(t),\\ c_1(t)= & {} a_4(t) b_2(t){}^2-a_3(t) b_2(t)-2 a_4(t) b_1(t)+3 a_2(t), \\ c_2(t)= & {} 3 a_3(t)-a_4(t) b_2(t), \ \ \ \ \ c_3(t)=3 a_4(t). \end{aligned}$$

Substituting the above relations in the differential part of (13), we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} b_0'(t) =&{} -a_4(t) b_0(t) b_2(t){}^3+a_3(t) b_0(t) b_2(t){}^2+b_0(t) b_2(t) \left( 3 a_4(t) b_1(t)-a_2(t)\right) \\ &{}-3 a_4(t) b_0(t){}^2-a_0(t) b_1(t)+b_0(t) \left( 3 a_1(t)-2 a_3(t) b_1(t)\right) , \\ b_1'(t) =&{} -a_4(t) b_1(t) b_2(t){}^3+b_2(t){}^2 \left( a_4(t) b_0(t)+a_3(t) b_1(t)\right) \\ &{} +b_2(t) \left( 3 a_4(t) b_1(t){}^2-a_2(t) b_1(t)-a_3(t) b_0(t)-2 a_0(t)\right) \\ &{}-2 a_3(t) b_1(t){}^2+2 a_1(t) b_1(t)+b_0(t) \left( 3 a_2(t)-5 a_4(t) b_1(t)\right) , \\ b_2'(t) =&{} -a_4(t) b_2(t){}^4+a_3(t) b_2(t){}^3+b_2(t){}^2 \left( 4 a_4(t) b_1(t) -a_2(t)\right) \\ &{}+b_2(t) \left( -4 a_4(t) b_0(t)-3 a_3(t) b_1(t)+a_1(t)\right) -2 a_4(t) b_1(t){}^2\\ &{}+3 a_3(t) b_0(t)+2 a_2(t) b_1(t)-3 a_0(t). \end{array}\right. \end{aligned}$$
(46)

In an especial case, let

$$\begin{aligned} a_0(t)= & {} \frac{16 \cos (t)}{\left( 9 \cos ^2(t)-17\right) \left( 9 \cos ^2(t)-11\right) },\\ a_1(t)= & {} \frac{\sin (t) \left( 3 \cos ^2(t)-5\right) \left( 81 \cos ^4(t)-252 \cos ^2(t) -90 \cos (t)+187\right) }{\left( 18 \cos ^2(t)-34\right) \left( 9 \cos ^2(t)-11\right) },\\ a_2(t)= & {} 1, \ \ \ \ \ \ \ \ a_3(t)=0,\\ a_4(t)= & {} \frac{243 \cos ^4(t)-756 \cos ^2(t)-108 \cos (t) +561}{\left( 18 \cos ^2(t)-34\right) \left( 9 \cos ^2(t)-11\right) }. \end{aligned}$$

Then \(F(t) = b_0(t)+b_1(t)x+x^{3}\) is an algebraic curve for the equation (45) where

$$\begin{aligned} b_0(t) = \frac{1}{6} \sin (t) (3 \cos (2 t)-7) , \, b_1(t) =\frac{2}{3}, \ \ \ \ b_2(t)\equiv 0 \end{aligned}$$

is the solution of (46) and the corresponding cofactor curve \(K(t) = c_0(t)+c_1(t)x+c_3(t)x^{3}\) is given by

$$\begin{aligned} c_0(t)= & {} -\frac{81 \sin (t) \cos (t) \left( 3 \cos ^2(t)-5\right) }{\left( 9 \cos ^2(t)-17\right) \left( 9 \cos ^2(t)-11\right) },\\ c_1(t)= & {} \frac{81 \cos ^4(t)-252 \cos ^2(t)+72 \cos (t)+187}{\left( 9 \cos ^2(t)-17\right) \left( 9 \cos ^2(t)-11\right) },\\ c_3(t)= & {} \frac{729 \cos ^4(t)-2268 \cos ^2(t)-324 \cos (t)+1683}{\left( 18 \cos ^2(t)-34\right) \left( 9 \cos ^2(t)-11\right) }. \end{aligned}$$

Finally, \(x(t)=\sin (t)\) is a solution of \(F(x(t),t) \equiv 0\), and thus (45) has a periodic orbit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiei Motlagh, O., Molaei Derakhtenjani, M. & Mohammadi Nejad, H.M. Oscillations on one dimensional time dependent center manifolds: algebraic curves approach. Collect. Math. 73, 433–456 (2022). https://doi.org/10.1007/s13348-021-00328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-021-00328-3

Keywords

Navigation