Skip to main content
Log in

Mesoporous silica nanoparticles, a safe option for silymarin delivery: preparation, characterization, and in vivo evaluation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present work aimed to prepare silymarin-loaded mesoporous silica nanoparticles (MSNs) and to assess the system’s dissolution enhancement ability on the pharmacodynamic performance of silymarin as a hepatoprotective agent. For this purpose, a soft-templating technique was used to prepare silymarin-loaded MSNs. The loaded MSNs were further characterized for their particle size, zeta potential, surface properties, and in vitro drug dissolution testing. In addition, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also carried out. DSC and specific surface area data confirmed deposition of silymarin in an amorphous state in MSNs’ pores. In vitro drug dissolution testing displayed enhanced dissolution rate of silymarin upon loading on MSNs compared with the free drug. Paracetamol-induced rat model of liver injury was used for the in vivo study. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), total proteins, liver homogenate content of thiobarbituric acid reactive species (TBARS), or lactate dehydrogenase (LDH) were assessed for all animal groups, treated and control ones. Based on parameters indicative of liver function, our results showed that the oral use of silymarin loaded onto MSNs at a dose of 250 mg/kg is significantly superior to free silymarin. Moreover, prolonged administration of the formulation had no evident toxicity on rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.

    Article  CAS  Google Scholar 

  2. Xu W, Riikonen J, Lehto V-P. Mesoporous systems for poorly soluble drugs. Int J Pharm. 2013;453(1):181–97.

    Article  CAS  PubMed  Google Scholar 

  3. Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T. Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings. Chem Mater. 2010;22(1):12–4.

    Article  CAS  Google Scholar 

  4. Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17(8):1225–36.

    Article  CAS  Google Scholar 

  5. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K. Adsorption of taxol into ordered Mesoporous silicas with various pore diameters. Chem Mater. 1999;11(4):1110–9.

    Article  CAS  Google Scholar 

  6. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27.

    Article  CAS  PubMed  Google Scholar 

  7. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, et al. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13(2):1602225.

    Article  Google Scholar 

  8. Tamanoi F, et al. In vivo tumor suppression efficacy of mesoporous silica nanoparticle-based drug delivery system: enhanced efficacy by folate modification. Nanomedicine in Cancer; 2017. Pan Stanford. p. 241–260.

  9. Sarah PH, et al. The biocompatibility of mesoporous silicates. Biomaterials. 2008;29(30):4045–55.

    Article  Google Scholar 

  10. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9(11):11023–33.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505–13.

    Article  CAS  PubMed  Google Scholar 

  12. Popat A, Jambhrunkar S, Zhang J, Yang J, Zhang H, Meka A, et al. Programmable drug release using bioresponsive mesoporous silica nanoparticles for site-specific oral drug delivery. Chem Commun. 2014;50(42):5547–50.

    Article  CAS  Google Scholar 

  13. Dixit N, Baboota S, Kohli K, Ahmad S, Ali J. Silymarin: a review of pharmacological aspects and bioavailability enhancement approaches. Indian J Pharmacol. 2007;39(4):172.

    Article  CAS  Google Scholar 

  14. Chen C-H, et al. Synergistic anti-cancer effect of baicalein and silymarin on human hepatoma HepG2 cells. Food Chem Toxicol. 2009;47(3):638–44.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Correa J, et al. Effects of silymarin MZ-80 on hepatic oxidative stress in rats with biliary obstruction. Pharmacology. 2002;64(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  16. Anthony KP, Saleh MA. Free radical scavenging and antioxidant activities of silymarin components. Antioxidants. 2013;2(4):398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valenzuela A, Aspillaga M, Vial S, Guerra R. Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med. 1989;55(05):420–2.

    Article  CAS  PubMed  Google Scholar 

  18. Valenzuela A, Garrido A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol Res. 1994;27:105.

    CAS  PubMed  Google Scholar 

  19. Wu J-W, Lin L-C, Tsai T-H. Drug–drug interactions of silymarin on the perspective of pharmacokinetics. J Ethnopharmacol. 2009;121(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  20. Cao X, Fu M, Wang L, Liu H, Deng W, Qu R, et al. Oral bioavailability of silymarin formulated as a novel 3-day delivery system based on porous silica nanoparticles. Acta Biomater. 2012;8(6):2104–12.

    Article  CAS  PubMed  Google Scholar 

  21. Fu T, Lu J, Guo L, Zhang L, Cai X, Zhu H. Improving bioavailability of silybin by inclusion into SBA-15 mesoporous silica materials. J Nanosci Nanotechnol. 2012;12(5):3997–4006.

    Article  CAS  PubMed  Google Scholar 

  22. United States Pharmacopeia and National Formulary (USP 40-NF 35). Rockville, MD: United States Pharmacopeial Convention; 2017, 7112.

  23. Yousef MI, Omar SAM, el-Guendi MI, Abdelmegid LA. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat. Food Chem Toxicol. 2010;48(11):3246–61.

    Article  CAS  PubMed  Google Scholar 

  24. Field A. Contrasts and post hoc tests for one-way independent ANOVA using SPSS. C8057 (Research Methods 2). [online]. Available from:[Accessed 3 Nov 2008]; 2000.

  25. Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater. 2001;13(2):258–63.

    Article  CAS  Google Scholar 

  26. Meynen V, Cool P, Vansant EF. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 2009;125(3):170–223.

    Article  CAS  Google Scholar 

  27. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons Ltd; 2000. p.10815–37.

  28. Storck S, Bretinger H, Maier WF. Characterization of micro-and mesoporous solids by physisorption methods and pore-size analysis. Appl Catal A Gen. 1998;174(1–2):137–46.

    Article  CAS  Google Scholar 

  29. Sayari A, Kruk M, Jaroniec M. Characterization of microporous-mesoporous MCM-41 silicates prepared in the presence of octyltrimethylammonium bromide. Catal Lett. 1997;49(3–4):147–53.

    Article  CAS  Google Scholar 

  30. Park J, Han Y, Kim H. Formation of mesoporous materials from silica dissolved in various NaOH concentrations: effect of pH and ionic strength. J Nanomater. 2012;2012:74.

    Google Scholar 

  31. Thommes M. Physical adsorption characterization of nanoporous materials. Chem Ing Tech. 2010;82(7):1059–73.

    Article  CAS  Google Scholar 

  32. Appaturi JN, Selvaraj M, Hamid SBA. Synthesis of 3-(2-furylmethylene)-2, 4-pentanedione using DL-alanine functionalized MCM-41 catalyst via Knoevenagel condensation reaction. Microporous Mesoporous Mater. 2018;260:260–9.

    Article  CAS  Google Scholar 

  33. Singh S, Kanungo M. Alterations in lactate dehydrogenase of the brain, heart, skeletal muscle, and liver of rats of various ages. J Biol Chem. 1968;243(17):4526–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Institute of Post Graduate Studies and Research, the dean Prof. Mokhtar Youssef, and Dr. Alaa Fathy Ibrahim for their assistance with the preliminary in vivo experiments. They would also like to extend their sincere appreciation to Prof. Hanan el Goweli, Department of Pharmacology, Faculty of Pharmacy, Alexandria University, for her valuable assistance with the in vivo experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba A. Hazzah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, S.S., Nasra, M.M.A., Hazzah, H.A. et al. Mesoporous silica nanoparticles, a safe option for silymarin delivery: preparation, characterization, and in vivo evaluation. Drug Deliv. and Transl. Res. 9, 968–979 (2019). https://doi.org/10.1007/s13346-019-00640-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00640-3

Keywords

Navigation